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Abstract
1.	 Species’ population trends are fundamental to conservation. They are used to de-
termine the state of nature, and to prioritize species for conservation action, for 
example through the IUCN red list. It is crucial to be able to quantify the degree to 
which population trend data can be trusted, yet there is not currently a straight-
forward way to do so.

2.	 We present a method that compares trends derived from various samples of 
‘complete’ population time series, to see how often these samples correctly esti-
mate the sign (i.e. direction) and magnitude of the complete trend. We apply our 
method to a dataset of 29,226 waterbird population time series from across North 
America.

3.	 Our analysis shows that, for waterbirds, if a statistically significant (p < .05) trend 
is detected, even from only a few years, it is likely to reliably describe the sign 
(positive or negative) of the complete trend, but is unlikely to accurately match 
the percentage change in population per year. If no significant trend is detected, 
a many‐years long sample is required to be confident that the population is truly 
stable. Furthermore, an insignificant trend is more likely to be missing a decline 
rather than an increase in the population. Sampling infrequently, but regularly, was 
surprising reliable in determining trend sign, but poor at determining percentage 
change per year.

4.	 By providing percentage estimates of reliability for combinations of sampling 
regimes and lengths, we have a means to determine the reliability of species 
population trends. This will increase the rigour of large‐scale population analy-
ses by allowing users to remove time series that do not meet a reliability cut‐off, 
or weighting time series by reliability, and could also facilitate planning of future 
monitoring schemes. While the specific values estimated by our analysis might not 
be applicable to other taxa or systems, the methods are easily transferable, and 
we provide the tools to do so.
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1  | INTRODUC TION

Many crucial conservation decisions rely on knowing the overall 
trend of a species or population. This information underpins IUCN 
red‐list classifications (Rodrigues, Pilgrim, Lamoreux, Hoffmann, & 
Brooks, 2006), many national threatened‐species ranking systems 
(e.g. NESP Threatened Species Recovery Hub, 2018; U.S. Fish & 
Wildlife Service, 2018) and can convey to policy makers the state of 
nature globally, regionally and locally (Collen et al., 2009; Gärdenfors, 
2001). It is important that decision makers appreciate the extent to 
which they can trust the apparent trend of a population, both to en-
sure that at‐risk species are not ignored and to avoid misallocating 
conservation resources towards species that are not actually at risk. 
The reliability of population trends are poorly understood (McCain, 
Szewczyk, & Knight, 2016; Wilson, Kendall, & Possingham, 2011), 
especially when data on variability and measurement error are not 
available. In addition, many large‐scale analyses and policy recom-
mendations (e.g. WWF, 2016) rely on aggregating trends across nu-
merous populations with little guidance on how to weight trends by 
their likely veracity.

Estimating the trend of a population requires a series of counts 
over time (typically years, as considered here). Linear, or nonlinear, 
models are then fit to estimate yearly change (% change per year, 
e.g. Farmer, Hussell, & Mizrahi, 2007), or modelled counts are com-
pared between years at the start and end of a time period (% change 
relative to a baseline, e.g. Collen et al., 2009). The number of years 
of data, sampling frequency, degree of measurement error and 
population variability all affect the reliability of the derived trend 
(Magurran et al., 2010). When data are available on measurement 
error and population variability, power analyses are recommended 
to estimate degree of reliability in trend estimates (Johnson, Barry, 
Ferguson, & Müller, 2014; Magurran et al., 2010). Although power 
analyses are useful where sufficient data are available, there is often 
insufficient information, especially when assessing many popula-
tions, or using existing count data.

Previous studies have attempted to quantify reliability of trends 
using both simulated and real data. Simulated studies conclude that 
longer time‐scales are needed for better trend estimates, and that 
there are high margins of error when detecting small population de-
clines (Connors, Cooper, Peterman, & Dulvy, 2014; Fox et al., 2018; 
Prozt, Peterman, Dulvy, Cooper, & Irvine, 2012; Tománková, Boland, 
Reid, & Fox, 2013; Wilson et al., 2011). Studies working with real 
data on diverse taxa have found that populations exhibiting a partic-
ular trend across one time‐interval often show an opposing trend in 
later years (Dunn, 2002; Keith et al., 2015). Others have assessed the 
number of years needed to reliably estimate a trend with a certain 
percentage of accuracy. For example White (2019) found that for a 
trend to be accurate to within 2% change per year, samples needed 
to be anywhere from 5 to 30 years in length, depending on the taxa. 
Others have estimated the number of years required for an accu-
rate estimate to be between 10 (Rueda‐Cediel, Anderson, Regan, 
Franklin, & Regan, 2015 for a snail species) and 21 years (Reynolds, 
Thompson, & Russell, 2011 for brown bears). These investigations 

are useful for gaining an approximate idea of reliability, but do not 
provide a straightforward way for a study to assign a value of reli-
ability to population time series of varying lengths (i.e. numbers of 
years).

Therefore, in the absence of guidance, studies based on popula-
tion trends often lack the data to make any quantification of uncer-
tainty (e.g. Craigie et al., 2010; Loh et al., 2005). Furthermore, most 
studies assume that there is a ‘true’ trend exhibited by each popu-
lation, but populations rarely demonstrate one linear trend continu-
ously through time, rather fluctuating in response to the positive and 
negative pressures affecting them.

We propose a modified  version of White (2019)'s  method to 
quantify uncertainty in trend estimates. Our analyses hinge on the 
concept of comparing the trend derived from a ‘sample’ (a subset 
of the full set of counts for a population) to the ‘complete’ trend of 
that population, derived from the full set of counts  (White, 2019). 
We have chosen to use the word ‘complete’ in this study rather than 
‘true’ as even with yearly counts we cannot claim to know the true 
trend of a population. Normally, one would possess only the sample, 
and we therefore hope to provide an estimate of how likely that sam-
ple is to represent the complete trend, regardless of sample length 
or complete trend length. In our analysis we quantify reliability both 
in terms of trend sign and magnitude of change (Gelman & Carlin, 
2014).

We ask two questions: (a) How reliable are trends derived from a 
certain number of years of data, based on the time over which a trend 
estimate is desired? For example how well do five consecutive years 
of survey data represent the trend of a population over 10 years?; and 
(b) How reliable are trends derived from data sampled at different 
intervals, such as samples taken every year over a 30‐year period, 
compared to every 5 years over the same period? We also investigate 
two factors that we expect to impact reliability: species generation 
time and shape of the complete trend. We expect that species with 
longer generation times will require longer survey periods, as there 
will be a lag before populations show responses to changes in birth 
rate, as older individuals are still living (Kuussaari et al., 2009). We 
also expect that trends estimated from samples of populations with 
complex nonlinear complete trends will be less accurate than samples 
from populations with linear or near‐linear complete trends.

As a case study, we use an empirical dataset of yearly counts 
of 129 waterbird species at 1,110 sites in North America (a total 
of 29,226 site by species combinations). Providing these estimates 
for waterbird data are particularly beneficial as data on waterbirds 
are available at large spatio‐temporal scales and waterbird studies 
can provide insights into broader conservation goals (Amano et al., 
2018; Amat & Green, 2010; Piersma & Lindström, 2004). However, 
our methods are general, and we provide code and instructions to 
generalize to other taxa. Our work provides an explicit measure of 
the reliability of a trend and gives an evidence‐based justification for 
excluding samples below a certain length, according to the degree 
of confidence desired for a study. Finally, these results can be used 
to plan multi‐species monitoring programs, to give the highest likeli-
hood of capturing representative trends for the most species.
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2  | MATERIAL S AND METHODS

2.1 | Data preparation

We obtained an initial dataset of yearly count data for 174 waterbird 
species in North America from the Christmas Bird Count (CBC; Dunn 
et al., 2005, see Supporting Information Section 1 for details) at 1,123 
sites spanning the years 1966 to 2013 (Amano et al., 2018), from which 
30 years of consecutive counts were taken for each site by species 
combination. We selected 30 years because it was a long‐term survey 
period, but sufficiently short that adequate data were still available. 
In cases where a site was sampled for over 30 years, the most recent 
30 years were taken. We considered each species at each site as an 
independent population; as we were not attempting to estimate the 
trends of entire species, correlations between sites were irrelevant.

Christmas Bird Count data have variable sampling effort, which 
must be accounted for in the modelling process. The most common 
expected relationship between effort and detection is a linear re-
lationship between log‐transformed count and effort. Following 
Butcher and McCulloch (1988) and Xu, Barrett, Lank, and Ydenberg 
(2015), we chose to retain only those species where a significant linear 
relationship between detection and log of effort was shown, found by 
running a negative binomial generalized linear model (see modelling 
specifications, below) for each species, at all years and sites:

The link function g(·) is ‘log’, so the inverse is an exponential. The 
expected value of Count for species i is predicted by an intercept, α, 
the log of effort (in hours), e, and it's coefficient, β (Equation 1). The 
variance of our count data is defined as negative binomial (Equation 
2). Any species found to have a non‐significant β (i.e. no relationship 
between effort and detection) were removed from analysis, as were 
those with a significant, but negative β (i.e. as effort increased, de-
tection decreased). We then included survey hours as an offset term 
in our models to account for this sampling effort.

We also removed any populations with a sum of less than 30 ob-
servations over the 30‐year sampling period, to remove populations 
with mostly zero counts. This resulted in our final dataset of 29,226 
populations, comprising 129 species at 1,110 sites (sees Supporting 
Information Section 2 for species list and site map).

As species varied in the extent to which they occurred at sites, we 
also ran our analysis on a standardized subset of the data: 99 species 
with 50 randomly selected sites each, 4,950 populations in total. Even 
though this dataset was less than 20% of the size of our full dataset, 
the results were highly congruent (Supporting Information Section 5).

2.2 | Modelling specifications

To estimate the population growth rate, r, with population counts 
as the response variable and years as the explanatory variable, we 

used generalized linear models (GLMs) run with the r package stats 
(R Core Team, 2017). We included effort using the ‘offset’ param-
eter, which allows a covariate with a known slope to be included in 
the model. For count data it is usual to use Poisson, quasi‐Poisson 
or negative binomial distributions for the response, with the latter 
two being more appropriate if there is over‐dispersion, where the 
variance of the response variable exceeds the mean. In our dataset 
99.7% of samples were over‐dispersed, with 77% of these by at least 
an order of magnitude. We therefore ran our models using the nega-
tive‐binomial distribution, though our provided code allows specifi-
cation of any of these three distributions.

Mathematically, the above model is expressed as the following:

As before, the link function g(·) was ‘log’, so the inverse is an ex-
ponential. The expected value of Count in year t is predicted by an 
intercept, α, the year coefficient, β, multiplied by the year value, x, 
and the log of effort (in hours), e (Equation 3). Because the relation-
ship between effort and count is known (i.e. a log linear relationship), 
it does not need a coefficient. As before, the variance of our count 
data is defined as negative binomial (Equation 4).

For each model the population growth rate, r, and p‐value 
of r were determined. r was obtained by raising e to the power 
of β (i.e. r = eβ). This value represents the population change per 
year: values above 1 indicate the population is increasing (e.g. 
1.03 would indicate a 3% increase in the population each year) 
and values below 1 indicate the population is declining (e.g. 0.98 
would indicate a 2% decrease in the population each year). p is ob-
tained directly from the model output. For our main analysis, we 
followed the convention of setting a significance level of p < .05. 
This is an arbitrary threshold, and circumstances may arise where 
the risk of missing a trend is greater than the risk of erroneously 
concluding there is one (e.g. a high‐risk group of species), in which 
case it is better to set a higher p‐value (Field, O'Connor, Tyre, & 
Possingham, 2007; Taylor & Gerrodette, 1993), and vice versa. 
Our code provides the ability to adjust the p‐value that defines 
significance if this is desired. In addition, Supporting Information 
Section 6 explores trend accuracy when no significance level cut‐
off is applied.

All models were run in r version 3.4.1 (R Core Team, 2017) using 
the Cambridge Service for Data Driven Discovery High Performance 
Computing service (https​://www.hpc.cam.ac.uk, last accessed 26 
September 2019).

2.3 | Complete trend

As discussed in the Introduction, we wished to investigate sample 
reliability regardless of the length of the complete time series. We 
sampled from the complete time series in two ways: in consecutive 
years and in intervals of years; these are defined in detail below. For 
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Consecutive Sampling we varied the length of the complete time se-
ries from 4 to 30 years (the maximum number of years available in 
our data). We would take complete trends from all possible subsets 
of the full 30 years of data (Figure 1a), and then take samples from 
each of these (Figure 1b i). However, because Interval Sampling al-
ready has two dimensions (interval length and number of years sam-
pled), we compared interval samples only to a complete time series 
length of 30 years (Figure 1b ii. Note that though this figure shows 

intervals being compared to a complete time series of 7 years, this is 
for simplicity only and all analysis compared intervals only to 30 year 
complete time series).

2.4 | Sampling methods (consecutive and interval)

For Consecutive Sampling (Figure 1b i), that is sampling from con-
secutive years, we took shorter adjacent subsets from a complete 

F I G U R E  1  Schematic of methods with hypothetical data. Sections are explained in left hand column, focussing on one example from 
each step. A reminder that because magnitude represents proportion population change per year, values less than one indicate a negative 
sign. In (a) 7‐year complete time series (bold black) are taken from the full 30 years of data, in actual analysis complete lengths range from 4 
to 30 years. In (b i.) 3‐year consecutive samples are taken (orange), in actual analysis these range from three years to complete time‐series 
length minus one. In (b ii.) samples of three years at two year intervals are taken (pink), in actual analysis these range from 3 to 29 year 
samples taken in 1 to 14 year intervals. NOTE interval samples are only taken from complete time series of 30 years in analysis, shown here 
from 7 years for simplicity. In (c), Missed Negative or Erroneous categories are not shown, as they only occur when the complete trend is 
negative or insignificant respectively (see Table 1). In (d) only a tolerance of ±0.01 is shown, in actual analysis tolerances range from ±0.01 to 
±0.5

2/5 Matching = 40%
2/5 Opposing = 40%
1/5 Missed Positive = 20% 

1/4 Correct = 25%

Matching Opposing Matching Missed
Positive

Opposing Matching Missed
Positive

Matching

1/2 Correct = 50%

2/3 Matching = 67%
1/3 Missed Positive = 33%

Year

 ii.

 iii.  iv.

 ii.

 iii.  iv.

 i.

 i.

 i. Consecutive Sampling  ii. Interval Sampling

NA NA

Negative
r = 0.98

Positive
r = 1.04

Insig.
r = NA

Negative
r = 0.96

Positive
r = 1.06

Insig.
r = NA

Positive
r = 1.04

Positive
r = 1.06

Sign = Positive
Magnitude (r) = 1.04

 ii.

 i.

)tnuo
C(gol

Sample 1 Sample 2 Sample 24

(b) Samples
We want to test how closely 
trends fitted to 3-year 
samples match the complete 
trend. So, from the 
complete sample, we take 
all possible 3 year samples in 
consecutive years (i) and 
two year intervals (ii). 
We calculate the sign and 
magnitude of the samples.

(a) Complete Samples.
We want see how well 
samples approximate a 7-year 
complete trend. To establish 
what this trend is, we take all 
possible consecutive 7-year 
samples from the 30-year 
time-series. We define these 
as "complete samples".
Here we focus on only one 
complete sample. We fit a 
linear trend and calculate its 
sign and magnitude (r). 
This defines what our "true" 
sign and magnitude are. 

(c) Sign Comparison.
We compare each sample 
trend sign to the complete 
trend sign to see whether 
they are matching, opposing, 
missed or erroneous. We 
calculate percentages in each 
category to get the likelihood 
of each occurring.
(d) Magnitude Comparison.
We compare each sample 
trend magntiude to the 
complete trend magnitude 
to see whether the sample 
trends are correct at a 
tolerance of ±0.01. We 
calculate the percentage that 
are correct at this tolerance 
to see how likely any sample 
is to be correct.
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dataset of n years in length. We sampled all possible consecutive 
subsamples from 3 years to n − 1 years (see also White, 2019). For 
Interval Sampling, we took samples at regular intervals from within 
the complete dataset (Figure 1b ii): we varied the interval length (i.e. 
samples taken every x years) from 1 year (i.e. consecutive years) to 
14 years (i.e. samples taken every 14 years, either at years 1, 15 and 
29, or 2, 16 and 30 years) and took all possible numbers of samples 
within these iterations to fill the 30‐year period (e.g. 3 samples taken 
every 4 years could be samples taken at years 1, 5 & 9; 2, 6 & 10; 
3, 7 & 11 etc).

2.5 | Comparison methods

We used two ways to assess whether a sample trend (Consecutive 
or Interval) was representative of a complete trend, as per Gelman 
& Carlin (2014). First, we took the sign (i.e. direction) of the trend, 
defining it as positive, negative or insignificant. Using this, a sam-
ple trend would be classified as matching if it was the same sign as 
the complete trend; opposing if it was the opposite sign; an errone-
ous positive or negative if it was positive or negative, respectively, 
but the complete trend was insignificant; and a missed positive or 
negative if it was insignificant, but the complete trend was positive 
or negative, respectively (Table 1). We term this ‘Sign Comparison’ 
(Figure 1c). Note that we conducted a final supplementary analysis 
considering how often insignificant sample trends still approximate 
the sign of significant complete trends (see Supporting Information 
Section 6).

Second, for cases where a significant trend was obtained from 
both the sample and complete time series (i.e. cases of ‘Matching’ 
or ‘Opposing’ from the Sign Comparison method), we considered 
the absolute difference between population growth rate r of the 
two; giving an idea of the degree of ‘correctness’. That is, differ-
ence = |rsample − rcomplete|. We defined tolerance levels ranging from 
±0.01 to ±0.5 and, if the difference was less than the tolerance 
level, the sample trend represented the complete trend and was 
correct and if it did not it was incorrect. We term this ‘Magnitude 
Comparison’ (Figure 1d).

In all cases, we obtained a sample r and a complete r for each 
population, the significance level of each, and then compared them 
to give a category for representativeness (using either the Sign or 
Magnitude Comparison method). We then found, for each combina-
tion of sample and complete time‐series lengths and sampling types, 
the percentage of our 29,226 populations in each representative-
ness category (Figure 1c iii, iv; Figure 1d iii, iv).

2.6 | Generation length

We considered generation length as a major factor that is likely to in-
fluence the duration of sampling required. This is because long‐lived 
species often take longer to show responses to environmental pres-
sures, as older individuals can continue to survive even if recruitment 
is falling (Kuussaari et al., 2009). To assess this, we divided our spe-
cies into three groups based on generation length: short (1–5 years), 
medium (6–10 years) and long (11–15 years). Generation length data 
were obtained from birdlife.org species fact sheets (e.g. http://dataz​
one.birdl​ife.org/speci​es/facts​heet/ruddy-turns​tone-arena​ria-inter​
pres/details, last accessed  26 September 2019). We then organized 
our standard analysis according to these three categories.

2.7 | Trend shape

Thus far, our analysis has only considered that trends can be lin-
ear. To assess how our results are affected by trends of different 
shapes (i.e. nonlinear trends), we used generalized additive models 
(GAMs) with the r package mass (Venables & Ripley, 2002). These 
nonparametric models allow for nonlinear relationships. We ran 
GAMs on all complete 30 year trends, model specification was the 
same as the GLMs but with a smoothing term on year, and took the 
estimated degrees of freedom (EDF) for each. EDFs ranged from 
1 to 8.57, so we divided our trends into four shape groups, lin-
ear and quadratic up to cubic (EDF = 1–2.99), cubic or low degree 
polynomial (EDF = 3–4.99), mid‐degree polynomial (EDF = 5–6.99) 
and high degree polynomial (EDF  =  7–8.99). We then organized 
our standard analysis (using GLMs) according to these four cat-
egories, to see whether complete trend shape affects sample 
representativeness.

3  | RESULTS

See Supporting Information Section 2 for summary statistics of the 
full dataset. All data used to produce plots are also provided, as well 
as code to reproduce full results on any set of population counts (See 
Supporting Information Section 7).

3.1 | Sign Comparison of Consecutive Sampling

Reliable estimation of the sign of complete trends required many 
years of data for Consecutive Sampling. For example to have an 

Sample trend sign

Complete trend sign

Positive Negative
Insignificant 
(p > .05)

Positive Matching Opposing Erroneous Positive

Negative Opposing Matching Erroneous Negative

Insignificant (p > .05) Missed Positive Missed Negative Matching

TA B L E  1  Categories used for Sign 
Comparison. Columns show sign of trend 
derived from complete time series and 
rows show sign of trend derived from 
sample time series. Cells show category, 
based on sample and complete trend sign

http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
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80%–100% chance of a sample trend having the same sign as a com-
plete trend, the sample time series needed to be almost as long as 
the complete time series (Figure 2a). However, sample trends op-
posed the complete trend less than 10% of the time (Figure 2b).

The chance of an erroneous positive or negative (i.e. the sample 
indicated a significant trend but the complete trend did not reflect 
this, Figure 2c,d) was low regardless of the length of the sample or 
complete trend. However, the chances of a missed positive or nega-
tive trend (i.e. the complete trend had a significant sign but the sam-
ple did not detect this) were higher (see also Supporting Information 
Section 6); missed negatives were more likely than missed positives, 
and both were more likely when the sample time series was con-
siderably shorter than the complete time series (Figure 2e,f). This 
implies that, particularly when trying to detect declines, shorter 
samples have low power to detect complete trends, but if they do 
detect a significant trend it is likely to be representative.

3.2 | Sign Comparison of Interval Sampling

Our results show that sampling in intervals can be more representa-
tive than sampling in consecutive years, when considering trend sign. 
For example, sampling for 24 consecutive years (out of a 30‐year 
complete time series) gave the matching result 70%–80% of the time 

(Figure 3a, bottom row, note this is equal to Figure 2a rightmost col-
umn), but the same level of reliability could be obtained by sampling 
13 times every second year (Figure 3a, second row). More strikingly, 
four samples taken every 9 years (Figure 3a, second column, top cell) 
gave the same percentage matching (60%–70%) as up to 20 years of 
Consecutive Sampling (Figure 3a, bottom row).

As with Consecutive Sampling, the percentage opposing for 
Interval Sampling was very low (Figure 3b), the chance of making 
an erroneous positive or negative was also very low for all sampling 
combinations (Figure 3c,d) and, though missed positives and nega-
tives were slightly more likely, the likelihood of missed trends never 
exceeded 40% (Figure 3e,f). As before, missed negatives were more 
likely than missed positives.

3.3 | Magnitude Comparison of 
Consecutive Sampling

When comparing the growth rate (r) of sample trends to complete 
trends, sample trends were regularly correct only at very high 
tolerances. Note that  for ease of interpretation these results are 
displayed at four complete trend lengths: 5, 10, 20 and 30 years. 
In order for the sample trend r to be within ±0.1 (i.e. 10% popula-
tion change per year) of the complete trend r 80% of the time, the 

F I G U R E  2  Sign comparison using Consecutive Sampling. Colour shows percentage of sample trends that, relative to the complete 
trend, were matching (a) opposing (b) an erroneous positive (c)/negative (d) or a missed positive (e)/negative (f) (see Table 1). Shown for all 
combinations of sample lengths (y‐axis), and complete lengths (x‐axis)

(b) Opposing (d) Erroneous negative (f) Missed negative

(a) Matching (c) Erroneous positive (e) Missed positive

4 8 12 16 20 24 28 4 8 12 16 20 24 28 4 8 12 16 20 24 28
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sample time series needed to be at least 9 years when compared 
to a complete time series of 10 years (Figure 4b); at least 15 years 
when compared to a 20‐year complete time series (Figure 4c); at 
least 19 years when compared to a 30‐year complete time series 

(Figure 4d); and could not be attained when the complete time se-
ries was 5 years long (Figure 4a). A sample of 29 years only esti-
mated a trend within 1% (±0.01) of the 30‐year trend in ~80% of 
situations (Figure 4d).

F I G U R E  3  Sign comparison using Interval Sampling. Colour shows percentage of sample trends that, relative to the complete trend, 
were matching (a) opposing (b) an erroneous positive (c) or negative (d) or a missed positive (e) or negative (f) (see Table 1). Shown for all 
combinations of Interval Sampling, with number of years sampled (x‐axis) and interval length (y‐axis). Thus 8 on the x‐axis and 4 on the y‐
axis would mean 8 samples were taken, one every 4 years. The bottom row of each plot is equal to the right most column of the equivalent 
Figure 2 plot, but is included here to ease comparison. Complete trend length is always 30 years
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F I G U R E  4  Magnitude comparison 
using Consecutive Sampling. Lines 
show percentage of sample trends that 
correctly estimate complete trends 
(y‐axis), measured by whether the 
sample r matched the complete r within 
the tolerance (colours show different 
tolerances). Shown for four complete 
trend lengths, 5 (a), 10 (b), 20 (c) and 
30 (d) years, and for all sample lengths 
(x‐axis)
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3.4 | Magnitude Comparison of Interval Sampling

Interval Sampling gave better results when comparing trend sign 
(Results 3.2), however did not perform as well for estimating mag-
nitude of change. It was not possible for even 50% of sample trends 
to be correct at low thresholds (±0.01–0.025; Figure 5). The shape 
of curves indicates that high percentages could be attained with 
enough years of sampling at large intervals, but this would mean 
sampling over very long time‐scales. Better reliability was achieved 
at higher tolerances, but only at ±0.5 and ±0.25, that is 25%–50% 
population change per year.

3.5 | Generation length and trend shape

When considering the Sign Comparison method, short samples of 
populations with long generation‐lengths were less likely to match 
the complete trend (Figure 6, Supporting Figure S3). For example to 
have at least a 50% chance of the sample trend matching a 30‐year 
complete trend, only a 4‐year sample was required for short genera-
tion‐length species (Figure 6a, 'Matching', bottom right corner), but 
an 11‐year sample was required for long generation‐length species 

(Figure 6c, 'Matching', last column, 11th cell). Erroneous trends and 
opposing trends were roughly equal among populations of different 
generation‐lengths (Figure 6, Supporting Figure S3). Populations of 
different generation‐lengths performed similarly according to the 
Magnitude Comparison method (Supporting Figures S4 and S5).

There was a surprising amount of consistency in results when 
considering trend shape (i.e. linear vs. nonlinear). When using the 
Sign Comparison method (Supporting Figures S6 and S7), percent-
ages of matching, opposing and missed positives/negatives remained 
stable as trend complexity increased, though erroneous positives 
and negative were less common for simpler trend shapes (low es-
timated degrees of freedom). Similarly, trend shape did not seem to 
affect the percentage of samples that were correct according to the 
Magnitude Comparison method (Supporting Figures S8 and S9).

4  | DISCUSSION

In this paper, we provide and test a method that can estimate reli-
ability of population trends of different lengths and sampling types, 
based on the total time over which a trend estimate is desired. Our 

F I G U R E  5  Magnitude comparison using Interval Sampling. Lines show percentage of sample trends that correctly estimate complete 
trends (y‐axis), measured by whether the sample r matched the complete r within the tolerance (colours); samples taken using Interval 
Sampling. Shown for six stages of Interval Sampling: samples taken either every 1 (a), 3 (b), 5 (c), 7 (d), 9 (e) or 11 (f) years (facets), for 
all possible numbers of years sampled (x‐axis). Complete trend length is always 30 years. Note that panel a is equal to Figure 4d (with a 
truncated x axis)
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results are derived from an entirely empirical dataset with no simu-
lations and they show a high amount of convergence (e.g. Figure 4), 
indicating that our sample sizes are large enough to give a reliable 
estimate of likelihood for each category. Our results were robust to 

standardization of the number of populations per species, subsetting 
of species into three separate groups based on generation length 
(see also White, 2019) and subsetting of populations into different 
trend shapes. We discuss the meaning of our results in the context 

F I G U R E  6  Sign comparison using Consecutive Sampling, for populations of different generation lengths. Colour shows percentage of 
sample trends that, relative to the complete trend, were matching, opposing, an erroneous positive/negative or a missed positive/negative 
(see Table 1). Shown for all combinations of sample lengths (y‐axis), and complete lengths (x‐axis). Divided by populations with either a) short 
(1–5 years), b) medium (6–10 years) or c) long (11–15 years) generation lengths
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of trusting population trends, how our methods can be adapted to 
other taxa, and how results from our methods can be used to quan-
tify reliability in large‐scale studies of population trends and to de-
sign future monitoring schemes.

4.1 | Waterbird case study

Our results show that if a significant trend is obtained from a popu-
lation time series, even when the data are from a few years, it is 
likely to reflect the longer term trend sign (direction) of the popu-
lation, though not necessarily the magnitude. Keith et al. (2015) 
studying birds similarly found that past population trajectory was a 
good predictor of future population trajectory and Møller, Rubolini, 
and Lehikoinen (2008) and Sanderson, Donald, Pain, Burfield, and 
Bommel (2006) found a similar, though weak, correlation between 
trends of migratory birds between 1970–1990 and 1990–2000. 
However, we show that to be confident that an insignificant trend 
(implying a stable population) is representative, one must sample for 
many years. Further, if an insignificant trend is obtained, it is more 
likely to be missing a decline than an increase in a population, and 
we suggest caution with conclusions and decisions from insignificant 
trends. It should be noted that Keith et al. (2015) found that past 
trajectories were not a good predictor of future trajectories in mam-
mals, salmon and other fish, meaning this method should be tested 
on other taxa using relevant data.

Sampling in intervals provided surprisingly accurate results that 
were better when compared to sampling the same number of years 
consecutively. When sampling a fixed number of times, accuracy 
increased with the distance between each sample. Presumably a 
limit exists at some point, but according to these results it is greater 
than 14 years. Other studies have found similar results (Starcevich, 
Irvine, & Heard, 2018; Urquhart, Paulsen, & Larsen, 1998), for exam-
ple Reynolds et al. (2011) found that surveying brown bears every 
10 years gave similar model performance to surveying in 3 out of 
every 5 years. Interval sampling could allow, say, a greater number of 
sites to be surveyed over a given area (Buckland & Johnston, 2017). 
However it is not always practical, especially for high‐risk species 
where declines may need to be detected and acted on quickly. In 
addition, while interval sampling could be good for cheaply obtaining 
trend estimates, it is not a replacement for long‐term monitoring that 
takes yearly samples, which can provide data for analyses consider-
ing drivers of population change.

In cases where analyses or management decisions depend not 
only on the sign of a population trajectory, but the actual rate of 
change, we find that sample trends are much less likely to be rep-
resentative of complete trends. To be 80% reliable at a rate of 
population change of 1%–2.5% per year over 30  years, one must 
sample for at least 19 consecutive years. These results are roughly 
similar to White (2019) who found, with diverse taxa, that to detect 
a population change of 1% per year one would need to sample for 
25–30 years; although a study of an invertebrates found diminishing 
returns on accuracy for samples greater than 10–15 years in length 
(Rueda‐Cediel et al., 2015). In our study, sampling in intervals also 

struggled to produce accurate results: 80% reliability was never 
achieved if samples had to be correct at anything less than a rate of 
change of 10% per year (i.e. drastic population change).

Finally, we found that generation length appears to have some 
impact on results, with short samples from longer lived species 
less likely to be accurate. This is probably because longer gener-
ation times can create a lag in population responses to pressures 
(Kuussaari et al., 2009). The chance of making an erroneous conclu-
sion, missing a trend, or falsely identifying a trend remained consis-
tent regardless of generation length. These results were exploratory, 
not hypothesis testing, and should therefore not be considered con-
clusive. This would be an interesting area for further research.

This analysis was kept simple by restricting it to single location 
time series, and by restricting sampling to a minimum of once every 
year. Increasing the number of samples in each time period can im-
prove confidence and accuracy in derived trends (Atkinson et al., 
2006) and it is likely that percentage reliability in derived trends 
would increase if this was considered. Some studies have found 
that sampling at more locations improved trend detection better 
than longer time series (Sims, Wanless, Harris, Mitchell, & Elston, 
2006, though see Schumann, Dann, Hoskins, & Arnould, 2013) and 
so modelling trends from multiple locations is also likely to improve 
our reliability estimates (Rhodes & Jonzén, 2011).

4.2 | Applications

For those working with large datasets who cannot conduct power 
analysis or quantify measurement error in their populations, reli-
ability can be assigned to trends using the data from this study 
(see Supporting Information Section 7), or data produced using 
these methods with other taxa (using the provided code, see Data 
Accessibility). The user should define a target ‘complete’ trend 
length for the study, and extract the reliability estimates for this 
complete trend length. After this, two options are possible: (a) as-
sign reliability estimates to each time series based on how long it 
is, and weight analysis according to these estimates or (b) select a 
threshold (e.g. time series must be at least 80% likely to represent 
the complete trend) and remove any time series that do not meet 
this criteria. We readily agree that our values are not infallible: they 
could vary with location, time period or taxa. However, this is an 
improvement on making an arbitrary cut‐off point, or having no way 
of weighting population trends.

These results could also be used to help plan future monitor-
ing schemes, but we would advise this be done cautiously. The 
goals of monitoring have been subject to much discussion (Hauser, 
Pople, & Possingham, 2006; Legg & Nagy, 2006; Lindenmayer & 
Likens, 2009; McDonald‐Madden et al., 2010; Nichols & Williams, 
2006), but in cases where programs are carried out with the goal 
of detecting trends (Marsh & Trenham, 2008) we can add our sup-
port to previous works (e.g. Rhodes & Jonzén, 2011; Rueda‐Cediel 
et al., 2015; White, 2019) that suggest that many years of monitor-
ing is essential to accurately capturing population trends. We also 
suggest that resources could be conserved and possibly allocated 
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to more locations or taxa if sampling is conducted in intervals 
rather than every year.

5  | CONCLUSIONS

In this age of increasing large‐scale analyses, we believe the scien-
tific community can do better at making informed decisions around 
uncertainty and reliability. Our methods and results provide a clear 
and quantitative way to add rigour to large‐scale population analy-
ses. We advocate an end to arbitrary cut‐offs, and recommend that, 
where possible, users instead consider methods such as ours to 
quantify reliability and make decisions about their data accordingly. 
Our methods are fully transferable to other taxa, and the concepts 
can also be transferred to areas outside of population ecology.
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