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Abstract
1.	 Species’	population	trends	are	fundamental	to	conservation.	They	are	used	to	de-
termine	the	state	of	nature,	and	to	prioritize	species	for	conservation	action,	for	
example	through	the	IUCN	red	list.	It	is	crucial	to	be	able	to	quantify	the	degree	to	
which	population	trend	data	can	be	trusted,	yet	there	is	not	currently	a	straight-
forward	way	to	do	so.

2.	 We	 present	 a	 method	 that	 compares	 trends	 derived	 from	 various	 samples	 of	
‘complete’	population	time	series,	to	see	how	often	these	samples	correctly	esti-
mate	the	sign	(i.e.	direction)	and	magnitude	of	the	complete	trend.	We	apply	our	
method	to	a	dataset	of	29,226	waterbird	population	time	series	from	across	North	
America.

3.	 Our	analysis	shows	that,	for	waterbirds,	if	a	statistically	significant	(p	<	.05)	trend	
is	detected,	even	from	only	a	 few	years,	 it	 is	 likely	 to	reliably	describe	the	sign	
(positive	or	negative)	of	 the	complete	trend,	but	 is	unlikely	to	accurately	match	
the	percentage	change	in	population	per	year.	If	no	significant	trend	is	detected,	
a	many‐years	long	sample	is	required	to	be	confident	that	the	population	is	truly	
stable.	Furthermore,	an	insignificant	trend	is	more	likely	to	be	missing	a	decline	
rather	than	an	increase	in	the	population.	Sampling	infrequently,	but	regularly,	was	
surprising	reliable	in	determining	trend	sign,	but	poor	at	determining	percentage	
change	per	year.

4.	 By	 providing	 percentage	 estimates	 of	 reliability	 for	 combinations	 of	 sampling	
regimes	 and	 lengths,	 we	 have	 a	 means	 to	 determine	 the	 reliability	 of	 species	
population	 trends.	This	will	 increase	 the	 rigour	of	 large‐scale	population	analy-
ses	by	allowing	users	to	remove	time	series	that	do	not	meet	a	reliability	cut‐off,	
or	weighting	time	series	by	reliability,	and	could	also	facilitate	planning	of	future	
monitoring	schemes.	While	the	specific	values	estimated	by	our	analysis	might	not	
be	applicable	to	other	taxa	or	systems,	the	methods	are	easily	transferable,	and	
we	provide	the	tools	to	do	so.

K E Y W O R D S

generation	length,	large‐scale	analyses,	monitoring,	population	trends,	survey,	time	series,	
Type	M	error,	Type	S	error

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0001-5370-4616
https://orcid.org/0000-0001-6576-3410
https://orcid.org/0000-0002-6498-0437
https://orcid.org/0000-0001-8221-013X
mailto:hsw34@cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13302&domain=pdf&date_stamp=2019-10-08


2  |    Methods in Ecology and Evoluon WAUCHOPE Et Al.

1  | INTRODUC TION

Many	 crucial	 conservation	 decisions	 rely	 on	 knowing	 the	 overall	
trend	of	a	species	or	population.	This	 information	underpins	IUCN	
red‐list	 classifications	 (Rodrigues,	Pilgrim,	 Lamoreux,	Hoffmann,	&	
Brooks,	 2006),	many	 national	 threatened‐species	 ranking	 systems	
(e.g.	 NESP	 Threatened	 Species	 Recovery	 Hub,	 2018;	 U.S.	 Fish	 &	
Wildlife	Service,	2018)	and	can	convey	to	policy	makers	the	state	of	
nature	globally,	regionally	and	locally	(Collen	et	al.,	2009;	Gärdenfors,	
2001).	It	is	important	that	decision	makers	appreciate	the	extent	to	
which	they	can	trust	the	apparent	trend	of	a	population,	both	to	en-
sure	that	at‐risk	species	are	not	ignored	and	to	avoid	misallocating	
conservation	resources	towards	species	that	are	not	actually	at	risk.	
The	reliability	of	population	trends	are	poorly	understood	(McCain,	
Szewczyk,	&	Knight,	 2016;	Wilson,	Kendall,	&	Possingham,	 2011),	
especially	when	data	on	variability	and	measurement	error	are	not	
available.	 In	addition,	many	 large‐scale	analyses	and	policy	recom-
mendations	(e.g.	WWF,	2016)	rely	on	aggregating	trends	across	nu-
merous	populations	with	little	guidance	on	how	to	weight	trends	by	
their	likely	veracity.

Estimating	the	trend	of	a	population	requires	a	series	of	counts	
over	time	(typically	years,	as	considered	here).	Linear,	or	nonlinear,	
models	are	 then	 fit	 to	estimate	yearly	change	 (%	change	per	year,	
e.g.	Farmer,	Hussell,	&	Mizrahi,	2007),	or	modelled	counts	are	com-
pared	between	years	at	the	start	and	end	of	a	time	period	(%	change	
relative	to	a	baseline,	e.g.	Collen	et	al.,	2009).	The	number	of	years	
of	 data,	 sampling	 frequency,	 degree	 of	 measurement	 error	 and	
population	 variability	 all	 affect	 the	 reliability	 of	 the	 derived	 trend	
(Magurran	et	 al.,	 2010).	When	data	are	available	on	measurement	
error	and	population	variability,	power	analyses	are	recommended	
to	estimate	degree	of	reliability	in	trend	estimates	(Johnson,	Barry,	
Ferguson,	&	Müller,	2014;	Magurran	et	al.,	2010).	Although	power	
analyses	are	useful	where	sufficient	data	are	available,	there	is	often	
insufficient	 information,	 especially	 when	 assessing	 many	 popula-
tions,	or	using	existing	count	data.

Previous	studies	have	attempted	to	quantify	reliability	of	trends	
using	both	simulated	and	real	data.	Simulated	studies	conclude	that	
longer	time‐scales	are	needed	for	better	trend	estimates,	and	that	
there	are	high	margins	of	error	when	detecting	small	population	de-
clines	(Connors,	Cooper,	Peterman,	&	Dulvy,	2014;	Fox	et	al.,	2018;	
Prozt,	Peterman,	Dulvy,	Cooper,	&	Irvine,	2012;	Tománková,	Boland,	
Reid,	&	Fox,	 2013;	Wilson	et	 al.,	 2011).	 Studies	working	with	 real	
data	on	diverse	taxa	have	found	that	populations	exhibiting	a	partic-
ular	trend	across	one	time‐interval	often	show	an	opposing	trend	in	
later	years	(Dunn,	2002;	Keith	et	al.,	2015).	Others	have	assessed	the	
number	of	years	needed	to	reliably	estimate	a	trend	with	a	certain	
percentage	of	accuracy.	For	example	White	(2019)	found	that	for	a	
trend	to	be	accurate	to	within	2%	change	per	year,	samples	needed	
to	be	anywhere	from	5	to	30	years	in	length,	depending	on	the	taxa.	
Others	have	estimated	 the	number	of	 years	 required	 for	 an	accu-
rate	 estimate	 to	 be	 between	 10	 (Rueda‐Cediel,	 Anderson,	 Regan,	
Franklin,	&	Regan,	2015	for	a	snail	species)	and	21	years	(Reynolds,	
Thompson,	&	Russell,	2011	for	brown	bears).	These	 investigations	

are	useful	for	gaining	an	approximate	idea	of	reliability,	but	do	not	
provide	a	straightforward	way	for	a	study	to	assign	a	value	of	reli-
ability	to	population	time	series	of	varying	lengths	(i.e.	numbers	of	
years).

Therefore,	in	the	absence	of	guidance,	studies	based	on	popula-
tion	trends	often	lack	the	data	to	make	any	quantification	of	uncer-
tainty	(e.g.	Craigie	et	al.,	2010;	Loh	et	al.,	2005).	Furthermore,	most	
studies	assume	that	there	is	a	‘true’	trend	exhibited	by	each	popu-
lation,	but	populations	rarely	demonstrate	one	linear	trend	continu-
ously	through	time,	rather	fluctuating	in	response	to	the	positive	and	
negative	pressures	affecting	them.

We	 propose	 a	 modified	 version	 of	 White	 (2019)'s	 method	 to	
quantify	uncertainty	in	trend	estimates.	Our	analyses	hinge	on	the	
concept	 of	 comparing	 the	 trend	derived	 from	a	 ‘sample’	 (a	 subset	
of	the	full	set	of	counts	for	a	population)	to	the	‘complete’	trend	of	
that	population,	derived	from	the	 full	 set	of	counts	 (White,	2019).	
We	have	chosen	to	use	the	word	‘complete’	in	this	study	rather	than	
‘true’	as	even	with	yearly	counts	we	cannot	claim	to	know	the	true	
trend	of	a	population.	Normally,	one	would	possess	only	the	sample,	
and	we	therefore	hope	to	provide	an	estimate	of	how	likely	that	sam-
ple	is	to	represent	the	complete	trend,	regardless	of	sample	length	
or	complete	trend	length.	In	our	analysis	we	quantify	reliability	both	
in	 terms	of	 trend	sign	and	magnitude	of	change	 (Gelman	&	Carlin,	
2014).

We	ask	two	questions:	(a)	How	reliable	are	trends	derived	from	a	
certain	number	of	years	of	data,	based	on	the	time	over	which	a	trend	
estimate	is	desired?	For	example	how	well	do	five	consecutive	years	
of	survey	data	represent	the	trend	of	a	population	over	10	years?;	and	
(b)	How	 reliable	 are	 trends	derived	 from	data	 sampled	at	different	
intervals,	 such	as	 samples	 taken	every	year	over	 a	30‐year	period,	
compared	to	every	5	years	over	the	same	period?	We	also	investigate	
two	factors	that	we	expect	to	impact	reliability:	species	generation	
time	and	shape	of	the	complete	trend.	We	expect	that	species	with	
longer	generation	times	will	require	longer	survey	periods,	as	there	
will	be	a	lag	before	populations	show	responses	to	changes	in	birth	
rate,	as	older	 individuals	are	 still	 living	 (Kuussaari	et	al.,	2009).	We	
also	expect	that	trends	estimated	from	samples	of	populations	with	
complex	nonlinear	complete	trends	will	be	less	accurate	than	samples	
from	populations	with	linear	or	near‐linear	complete	trends.

As	 a	 case	 study,	we	 use	 an	 empirical	 dataset	 of	 yearly	 counts	
of	 129	waterbird	 species	 at	 1,110	 sites	 in	North	 America	 (a	 total	
of	29,226	site	by	species	combinations).	Providing	these	estimates	
for	waterbird	data	are	particularly	beneficial	as	data	on	waterbirds	
are	available	at	 large	spatio‐temporal	 scales	and	waterbird	studies	
can	provide	insights	into	broader	conservation	goals	(Amano	et	al.,	
2018;	Amat	&	Green,	2010;	Piersma	&	Lindström,	2004).	However,	
our	methods	are	general,	and	we	provide	code	and	instructions	to	
generalize	to	other	taxa.	Our	work	provides	an	explicit	measure	of	
the	reliability	of	a	trend	and	gives	an	evidence‐based	justification	for	
excluding	samples	below	a	certain	 length,	according	to	the	degree	
of	confidence	desired	for	a	study.	Finally,	these	results	can	be	used	
to	plan	multi‐species	monitoring	programs,	to	give	the	highest	likeli-
hood	of	capturing	representative	trends	for	the	most	species.
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2  | MATERIAL S AND METHODS

2.1 | Data preparation

We	obtained	an	initial	dataset	of	yearly	count	data	for	174	waterbird	
species	in	North	America	from	the	Christmas	Bird	Count	(CBC;	Dunn	
et	al.,	2005,	see	Supporting	Information	Section	1	for	details)	at	1,123	
sites	spanning	the	years	1966	to	2013	(Amano	et	al.,	2018),	from	which	
30	years	of	 consecutive	counts	were	 taken	 for	each	 site	by	 species	
combination.	We	selected	30	years	because	it	was	a	long‐term	survey	
period,	but	sufficiently	short	 that	adequate	data	were	still	 available.	
In	cases	where	a	site	was	sampled	for	over	30	years,	the	most	recent	
30	years	were	taken.	We	considered	each	species	at	each	site	as	an	
independent	population;	as	we	were	not	attempting	to	estimate	the	
trends	of	entire	species,	correlations	between	sites	were	irrelevant.

Christmas	Bird	Count	data	have	variable	sampling	effort,	which	
must	be	accounted	for	in	the	modelling	process.	The	most	common	
expected	 relationship	 between	 effort	 and	 detection	 is	 a	 linear	 re-
lationship	 between	 log‐transformed	 count	 and	 effort.	 Following	
Butcher	and	McCulloch	(1988)	and	Xu,	Barrett,	Lank,	and	Ydenberg	
(2015),	we	chose	to	retain	only	those	species	where	a	significant	linear	
relationship	between	detection	and	log	of	effort	was	shown,	found	by	
running	a	negative	binomial	generalized	linear	model	(see	modelling	
specifications,	below)	for	each	species,	at	all	years	and	sites:

The	link	function	g(·)	is	‘log’,	so	the	inverse	is	an	exponential.	The	
expected	value	of	Count	for	species	i	is	predicted	by	an	intercept,	α,	
the	log	of	effort	(in	hours),	e,	and	it's	coefficient,	β	(Equation	1).	The	
variance	of	our	count	data	is	defined	as	negative	binomial	(Equation	
2).	Any	species	found	to	have	a	non‐significant	β	(i.e.	no	relationship	
between	effort	and	detection)	were	removed	from	analysis,	as	were	
those	with	a	significant,	but	negative	β	(i.e.	as	effort	increased,	de-
tection	decreased).	We	then	included	survey	hours	as	an	offset	term	
in	our	models	to	account	for	this	sampling	effort.

We	also	removed	any	populations	with	a	sum	of	less	than	30	ob-
servations	over	the	30‐year	sampling	period,	to	remove	populations	
with	mostly	zero	counts.	This	resulted	in	our	final	dataset	of	29,226	
populations,	comprising	129	species	at	1,110	sites	(sees	Supporting	
Information	Section	2	for	species	list	and	site	map).

As	species	varied	in	the	extent	to	which	they	occurred	at	sites,	we	
also	ran	our	analysis	on	a	standardized	subset	of	the	data:	99	species	
with	50	randomly	selected	sites	each,	4,950	populations	in	total.	Even	
though	this	dataset	was	less	than	20%	of	the	size	of	our	full	dataset,	
the	results	were	highly	congruent	(Supporting	Information	Section	5).

2.2 | Modelling specifications

To	estimate	 the	population	growth	 rate,	 r,	with	population	 counts	
as	the	response	variable	and	years	as	the	explanatory	variable,	we	

used	generalized	linear	models	(GLMs)	run	with	the	r	package	stats	
(R	Core	Team,	2017).	We	 included	effort	using	 the	 ‘offset’	param-
eter,	which	allows	a	covariate	with	a	known	slope	to	be	included	in	
the	model.	For	count	data	 it	 is	usual	to	use	Poisson,	quasi‐Poisson	
or	negative	binomial	distributions	for	the	response,	with	the	 latter	
two	being	more	appropriate	 if	 there	 is	over‐dispersion,	where	 the	
variance	of	the	response	variable	exceeds	the	mean.	In	our	dataset	
99.7%	of	samples	were	over‐dispersed,	with	77%	of	these	by	at	least	
an	order	of	magnitude.	We	therefore	ran	our	models	using	the	nega-
tive‐binomial	distribution,	though	our	provided	code	allows	specifi-
cation	of	any	of	these	three	distributions.

Mathematically,	the	above	model	is	expressed	as	the	following:

As	before,	the	link	function	g(·)	was	‘log’,	so	the	inverse	is	an	ex-
ponential.	The	expected	value	of	Count	in	year	t	is	predicted	by	an	
intercept,	α,	the	year	coefficient,	β,	multiplied	by	the	year	value,	x,	
and	the	log	of	effort	(in	hours),	e	(Equation	3).	Because	the	relation-
ship	between	effort	and	count	is	known	(i.e.	a	log	linear	relationship),	
it	does	not	need	a	coefficient.	As	before,	the	variance	of	our	count	
data	is	defined	as	negative	binomial	(Equation	4).

For	 each	 model	 the	 population	 growth	 rate,	 r,	 and	 p-value 
of r	were	determined.	 r	was	obtained	by	 raising	 e	 to	 the	power	
of β	 (i.e.	r = eβ).	This	value	represents	the	population	change	per	
year:	 values	 above	 1	 indicate	 the	 population	 is	 increasing	 (e.g.	
1.03	would	 indicate	 a	 3%	 increase	 in	 the	 population	 each	 year)	
and	values	below	1	indicate	the	population	is	declining	(e.g.	0.98	
would	indicate	a	2%	decrease	in	the	population	each	year).	p	is	ob-
tained	directly	from	the	model	output.	For	our	main	analysis,	we	
followed	the	convention	of	setting	a	significance	level	of	p	<	.05.	
This	is	an	arbitrary	threshold,	and	circumstances	may	arise	where	
the	risk	of	missing	a	trend	is	greater	than	the	risk	of	erroneously	
concluding	there	is	one	(e.g.	a	high‐risk	group	of	species),	in	which	
case	 it	 is	better	to	set	a	higher	p‐value	(Field,	O'Connor,	Tyre,	&	
Possingham,	 2007;	 Taylor	 &	 Gerrodette,	 1993),	 and	 vice versa. 
Our	 code	provides	 the	 ability	 to	 adjust	 the	p‐value	 that	defines	
significance	if	this	is	desired.	In	addition,	Supporting	Information	
Section	6	explores	trend	accuracy	when	no	significance	level	cut‐
off	is	applied.

All	models	were	run	in	r	version	3.4.1	(R	Core	Team,	2017)	using	
the	Cambridge	Service	for	Data	Driven	Discovery	High	Performance	
Computing	 service	 (https	://www.hpc.cam.ac.uk,	 last	 accessed	 26	
September	2019).

2.3 | Complete trend

As	discussed	 in	 the	 Introduction,	we	wished	to	 investigate	sample	
reliability	regardless	of	the	length	of	the	complete	time	series.	We	
sampled	from	the	complete	time	series	in	two	ways:	in	consecutive	
years	and	in	intervals	of	years;	these	are	defined	in	detail	below.	For	
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Consecutive	Sampling	we	varied	the	length	of	the	complete	time	se-
ries	from	4	to	30	years	(the	maximum	number	of	years	available	in	
our	data).	We	would	take	complete	trends	from	all	possible	subsets	
of	the	full	30	years	of	data	(Figure	1a),	and	then	take	samples	from	
each	of	these	(Figure	1b	i).	However,	because	Interval	Sampling	al-
ready	has	two	dimensions	(interval	length	and	number	of	years	sam-
pled),	we	compared	interval	samples	only	to	a	complete	time	series	
length	of	30	years	(Figure	1b	ii.	Note	that	though	this	figure	shows	

intervals	being	compared	to	a	complete	time	series	of	7	years,	this	is	
for	simplicity	only	and	all	analysis	compared	intervals	only	to	30	year	
complete	time	series).

2.4 | Sampling methods (consecutive and interval)

For	Consecutive	Sampling	 (Figure	1b	 i),	 that	 is	sampling	from	con-
secutive	years,	we	 took	shorter	adjacent	 subsets	 from	a	complete	

F I G U R E  1  Schematic	of	methods	with	hypothetical	data.	Sections	are	explained	in	left	hand	column,	focussing	on	one	example	from	
each	step.	A	reminder	that	because	magnitude	represents	proportion	population	change	per	year,	values	less	than	one	indicate	a	negative	
sign.	In	(a)	7‐year	complete	time	series	(bold	black)	are	taken	from	the	full	30	years	of	data,	in	actual	analysis	complete	lengths	range	from	4	
to	30	years.	In	(b	i.)	3‐year	consecutive	samples	are	taken	(orange),	in	actual	analysis	these	range	from	three	years	to	complete	time‐series	
length	minus	one.	In	(b	ii.)	samples	of	three	years	at	two	year	intervals	are	taken	(pink),	in	actual	analysis	these	range	from	3	to	29	year	
samples	taken	in	1	to	14	year	intervals.	NOTE	interval	samples	are	only	taken	from	complete	time	series	of	30	years	in	analysis,	shown	here	
from	7	years	for	simplicity.	In	(c),	Missed	Negative	or	Erroneous	categories	are	not	shown,	as	they	only	occur	when	the	complete	trend	is	
negative	or	insignificant	respectively	(see	Table	1).	In	(d)	only	a	tolerance	of	±0.01	is	shown,	in	actual	analysis	tolerances	range	from	±0.01	to	
±0.5
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(b) Samples
We want to test how closely 
trends fitted to 3-year 
samples match the complete 
trend. So, from the 
complete sample, we take 
all possible 3 year samples in 
consecutive years (i) and 
two year intervals (ii). 
We calculate the sign and 
magnitude of the samples.

(a) Complete Samples.
We want see how well 
samples approximate a 7-year 
complete trend. To establish 
what this trend is, we take all 
possible consecutive 7-year 
samples from the 30-year 
time-series. We define these 
as "complete samples".
Here we focus on only one 
complete sample. We fit a 
linear trend and calculate its 
sign and magnitude (r). 
This defines what our "true" 
sign and magnitude are. 

(c) Sign Comparison.
We compare each sample 
trend sign to the complete 
trend sign to see whether 
they are matching, opposing, 
missed or erroneous. We 
calculate percentages in each 
category to get the likelihood 
of each occurring.
(d) Magnitude Comparison.
We compare each sample 
trend magntiude to the 
complete trend magnitude 
to see whether the sample 
trends are correct at a 
tolerance of ±0.01. We 
calculate the percentage that 
are correct at this tolerance 
to see how likely any sample 
is to be correct.
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dataset	 of	n	 years	 in	 length.	We	 sampled	 all	 possible	 consecutive	
subsamples	from	3	years	to	n	−	1	years	(see	also	White,	2019).	For	
Interval	Sampling,	we	took	samples	at	regular	intervals	from	within	
the	complete	dataset	(Figure	1b	ii):	we	varied	the	interval	length	(i.e.	
samples	taken	every	x	years)	from	1	year	(i.e.	consecutive	years)	to	
14	years	(i.e.	samples	taken	every	14	years,	either	at	years	1,	15	and	
29,	or	2,	16	and	30	years)	and	took	all	possible	numbers	of	samples	
within	these	iterations	to	fill	the	30‐year	period	(e.g.	3	samples	taken	
every	4	years	could	be	samples	taken	at	years	1,	5	&	9;	2,	6	&	10;	
3,	7	&	11	etc).

2.5 | Comparison methods

We	used	two	ways	to	assess	whether	a	sample	trend	(Consecutive	
or	Interval)	was	representative	of	a	complete	trend,	as	per	Gelman	
&	Carlin	(2014).	First,	we	took	the	sign	(i.e.	direction)	of	the	trend,	
defining	 it	 as	positive,	 negative	or	 insignificant.	Using	 this,	 a	 sam-
ple	trend	would	be	classified	as	matching	if	it	was	the	same	sign	as	
the	complete	trend;	opposing	if	it	was	the	opposite	sign;	an	errone-
ous	positive	or	negative	if	it	was	positive	or	negative,	respectively,	
but	 the	complete	trend	was	 insignificant;	and	a	missed	positive	or	
negative	if	it	was	insignificant,	but	the	complete	trend	was	positive	
or	negative,	respectively	(Table	1).	We	term	this	 ‘Sign	Comparison’	
(Figure	1c).	Note	that	we	conducted	a	final	supplementary	analysis	
considering	how	often	insignificant	sample	trends	still	approximate	
the	sign	of	significant	complete	trends	(see	Supporting	Information	
Section	6).

Second,	 for	cases	where	a	significant	trend	was	obtained	from	
both	 the	 sample	and	complete	 time	series	 (i.e.	 cases	of	 ‘Matching’	
or	 ‘Opposing’	 from	 the	 Sign	 Comparison	method),	 we	 considered	
the	 absolute	 difference	 between	 population	 growth	 rate	 r	 of	 the	
two;	 giving	 an	 idea	 of	 the	 degree	 of	 ‘correctness’.	 That	 is,	 differ-
ence = |rsample	−	rcomplete|.	We	defined	tolerance	levels	ranging	from	
±0.01	 to	 ±0.5	 and,	 if	 the	 difference	 was	 less	 than	 the	 tolerance	
level,	 the	 sample	 trend	 represented	 the	 complete	 trend	 and	 was	
correct	and	 if	 it	did	not	 it	was	 incorrect.	We	term	this	 ‘Magnitude	
Comparison’	(Figure	1d).

In	all	 cases,	we	obtained	a	 sample	 r	 and	a	complete	 r for each 
population,	the	significance	level	of	each,	and	then	compared	them	
to	give	a	category	 for	 representativeness	 (using	either	 the	Sign	or	
Magnitude	Comparison	method).	We	then	found,	for	each	combina-
tion	of	sample	and	complete	time‐series	lengths	and	sampling	types,	
the	 percentage	 of	 our	 29,226	populations	 in	 each	 representative-
ness	category	(Figure	1c	iii,	iv;	Figure	1d	iii,	iv).

2.6 | Generation length

We	considered	generation	length	as	a	major	factor	that	is	likely	to	in-
fluence	the	duration	of	sampling	required.	This	is	because	long‐lived	
species	often	take	longer	to	show	responses	to	environmental	pres-
sures,	as	older	individuals	can	continue	to	survive	even	if	recruitment	
is	falling	(Kuussaari	et	al.,	2009).	To	assess	this,	we	divided	our	spe-
cies	into	three	groups	based	on	generation	length:	short	(1–5	years),	
medium	(6–10	years)	and	long	(11–15	years).	Generation	length	data	
were	obtained	from	birdlife.org	species	fact	sheets	(e.g.	http://dataz	
one.birdl	ife.org/speci	es/facts	heet/ruddy‐turns	tone‐arena	ria‐inter	
pres/details,	last	accessed		26	September	2019).	We	then	organized	
our	standard	analysis	according	to	these	three	categories.

2.7 | Trend shape

Thus	far,	our	analysis	has	only	considered	that	trends	can	be	lin-
ear.	To	assess	how	our	results	are	affected	by	trends	of	different	
shapes	(i.e.	nonlinear	trends),	we	used	generalized	additive	models	
(GAMs)	with	the	r	package	mass	(Venables	&	Ripley,	2002).	These	
nonparametric	models	 allow	 for	 nonlinear	 relationships.	We	 ran	
GAMs	on	all	complete	30	year	trends,	model	specification	was	the	
same	as	the	GLMs	but	with	a	smoothing	term	on	year,	and	took	the	
estimated	degrees	of	freedom	(EDF)	for	each.	EDFs	ranged	from	
1	 to	 8.57,	 so	we	 divided	 our	 trends	 into	 four	 shape	 groups,	 lin-
ear	and	quadratic	up	to	cubic	(EDF	=	1–2.99),	cubic	or	low	degree	
polynomial	(EDF	=	3–4.99),	mid‐degree	polynomial	(EDF	=	5–6.99)	
and	 high	 degree	 polynomial	 (EDF	 =	 7–8.99).	We	 then	 organized	
our	 standard	 analysis	 (using	GLMs)	 according	 to	 these	 four	 cat-
egories,	 to	 see	 whether	 complete	 trend	 shape	 affects	 sample	
representativeness.

3  | RESULTS

See	Supporting	Information	Section	2	for	summary	statistics	of	the	
full	dataset.	All	data	used	to	produce	plots	are	also	provided,	as	well	
as	code	to	reproduce	full	results	on	any	set	of	population	counts	(See	
Supporting	Information	Section	7).

3.1 | Sign Comparison of Consecutive Sampling

Reliable	 estimation	 of	 the	 sign	 of	 complete	 trends	 required	many	
years	 of	 data	 for	 Consecutive	 Sampling.	 For	 example	 to	 have	 an	

Sample trend sign

Complete trend sign

Positive Negative
Insignificant 
(p > .05)

Positive Matching Opposing Erroneous	Positive

Negative Opposing Matching Erroneous	Negative

Insignificant	(p	>	.05) Missed	Positive Missed	Negative Matching

TA B L E  1  Categories	used	for	Sign	
Comparison.	Columns	show	sign	of	trend	
derived	from	complete	time	series	and	
rows	show	sign	of	trend	derived	from	
sample	time	series.	Cells	show	category,	
based	on	sample	and	complete	trend	sign

http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
http://datazone.birdlife.org/species/factsheet/ruddy-turnstone-arenaria-interpres/details
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80%–100%	chance	of	a	sample	trend	having	the	same	sign	as	a	com-
plete	trend,	the	sample	time	series	needed	to	be	almost	as	long	as	
the	 complete	 time	 series	 (Figure	2a).	However,	 sample	 trends	 op-
posed	the	complete	trend	less	than	10%	of	the	time	(Figure	2b).

The	chance	of	an	erroneous	positive	or	negative	(i.e.	the	sample	
indicated	a	significant	trend	but	the	complete	trend	did	not	reflect	
this,	Figure	2c,d)	was	low	regardless	of	the	length	of	the	sample	or	
complete	trend.	However,	the	chances	of	a	missed	positive	or	nega-
tive	trend	(i.e.	the	complete	trend	had	a	significant	sign	but	the	sam-
ple	did	not	detect	this)	were	higher	(see	also	Supporting	Information	
Section	6);	missed	negatives	were	more	likely	than	missed	positives,	
and	both	were	more	 likely	when	 the	 sample	 time	 series	was	 con-
siderably	 shorter	 than	 the	 complete	 time	 series	 (Figure	2e,f).	 This	
implies	 that,	 particularly	 when	 trying	 to	 detect	 declines,	 shorter	
samples	have	low	power	to	detect	complete	trends,	but	 if	they	do	
detect	a	significant	trend	it	is	likely	to	be	representative.

3.2 | Sign Comparison of Interval Sampling

Our	results	show	that	sampling	in	intervals	can	be	more	representa-
tive	than	sampling	in	consecutive	years,	when	considering	trend	sign.	
For	 example,	 sampling	 for	 24	 consecutive	 years	 (out	 of	 a	 30‐year	
complete	time	series)	gave	the	matching	result	70%–80%	of	the	time	

(Figure	3a,	bottom	row,	note	this	is	equal	to	Figure	2a	rightmost	col-
umn),	but	the	same	level	of	reliability	could	be	obtained	by	sampling	
13	times	every	second	year	(Figure	3a,	second	row).	More	strikingly,	
four	samples	taken	every	9	years	(Figure	3a,	second	column,	top	cell)	
gave	the	same	percentage	matching	(60%–70%)	as	up	to	20	years	of	
Consecutive	Sampling	(Figure	3a,	bottom	row).

As	 with	 Consecutive	 Sampling,	 the	 percentage	 opposing	 for	
Interval	 Sampling	was	 very	 low	 (Figure	3b),	 the	 chance	of	making	
an	erroneous	positive	or	negative	was	also	very	low	for	all	sampling	
combinations	(Figure	3c,d)	and,	though	missed	positives	and	nega-
tives	were	slightly	more	likely,	the	likelihood	of	missed	trends	never	
exceeded	40%	(Figure	3e,f).	As	before,	missed	negatives	were	more	
likely	than	missed	positives.

3.3 | Magnitude Comparison of 
Consecutive Sampling

When	comparing	the	growth	rate	(r)	of	sample	trends	to	complete	
trends,	 sample	 trends	 were	 regularly	 correct	 only	 at	 very	 high	
tolerances.	Note	 that	 for	 ease	of	 interpretation	 these	 results	 are	
displayed	at	four	complete	trend	 lengths:	5,	10,	20	and	30	years.	
In	order	for	the	sample	trend	r	to	be	within	±0.1	(i.e.	10%	popula-
tion	change	per	year)	of	the	complete	trend	r	80%	of	the	time,	the	

F I G U R E  2  Sign	comparison	using	Consecutive	Sampling.	Colour	shows	percentage	of	sample	trends	that,	relative	to	the	complete	
trend,	were	matching	(a)	opposing	(b)	an	erroneous	positive	(c)/negative	(d)	or	a	missed	positive	(e)/negative	(f)	(see	Table	1).	Shown	for	all	
combinations	of	sample	lengths	(y‐axis),	and	complete	lengths	(x‐axis)

(b) Opposing (d) Erroneous negative (f) Missed negative

(a) Matching (c) Erroneous positive (e) Missed positive
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sample	time	series	needed	to	be	at	 least	9	years	when	compared	
to	a	complete	time	series	of	10	years	(Figure	4b);	at	least	15	years	
when	compared	to	a	20‐year	complete	 time	series	 (Figure	4c);	at	
least	19	years	when	compared	to	a	30‐year	complete	time	series	

(Figure	4d);	and	could	not	be	attained	when	the	complete	time	se-
ries	was	5	years	 long	 (Figure	4a).	A	sample	of	29	years	only	esti-
mated	a	trend	within	1%	(±0.01)	of	the	30‐year	trend	in	~80%	of	
situations	(Figure	4d).

F I G U R E  3  Sign	comparison	using	Interval	Sampling.	Colour	shows	percentage	of	sample	trends	that,	relative	to	the	complete	trend,	
were	matching	(a)	opposing	(b)	an	erroneous	positive	(c)	or	negative	(d)	or	a	missed	positive	(e)	or	negative	(f)	(see	Table	1).	Shown	for	all	
combinations	of	Interval	Sampling,	with	number	of	years	sampled	(x‐axis)	and	interval	length	(y‐axis).	Thus	8	on	the	x‐axis	and	4	on	the	y-
axis	would	mean	8	samples	were	taken,	one	every	4	years.	The	bottom	row	of	each	plot	is	equal	to	the	right	most	column	of	the	equivalent	
Figure	2	plot,	but	is	included	here	to	ease	comparison.	Complete	trend	length	is	always	30	years

(b) Opposing (d) Erroneous negative (f) Missed negative

(a) Matching (c) Erroneous positive (e) Missed positive

3 8 13 18 23 28 3 8 13 18 23 28 3 8 13 18 23 28

1
4
7

10
13

1
4
7

10
13

Number of years sampled

S
am

pl
es

 ta
ke

n 
ev

er
y 

x 
ye

ar
s

Percentage
90−100
80−90
70−80
60−70
50−60
40−50
30−40
20−30
10−20
0−10

F I G U R E  4  Magnitude	comparison	
using	Consecutive	Sampling.	Lines	
show	percentage	of	sample	trends	that	
correctly	estimate	complete	trends	
(y‐axis),	measured	by	whether	the	
sample	r	matched	the	complete	r	within	
the	tolerance	(colours	show	different	
tolerances).	Shown	for	four	complete	
trend	lengths,	5	(a),	10	(b),	20	(c)	and	
30	(d)	years,	and	for	all	sample	lengths	
(x‐axis)
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3.4 | Magnitude Comparison of Interval Sampling

Interval	 Sampling	 gave	 better	 results	 when	 comparing	 trend	 sign	
(Results	3.2),	however	did	not	perform	as	well	for	estimating	mag-
nitude	of	change.	It	was	not	possible	for	even	50%	of	sample	trends	
to	be	correct	at	low	thresholds	(±0.01–0.025;	Figure	5).	The	shape	
of	 curves	 indicates	 that	 high	 percentages	 could	 be	 attained	 with	
enough	 years	 of	 sampling	 at	 large	 intervals,	 but	 this	would	mean	
sampling	over	very	long	time‐scales.	Better	reliability	was	achieved	
at	higher	tolerances,	but	only	at	±0.5	and	±0.25,	that	 is	25%–50%	
population	change	per	year.

3.5 | Generation length and trend shape

When	considering	the	Sign	Comparison	method,	short	samples	of	
populations	with	long	generation‐lengths	were	less	likely	to	match	
the	complete	trend	(Figure	6,	Supporting	Figure	S3).	For	example	to	
have	at	least	a	50%	chance	of	the	sample	trend	matching	a	30‐year	
complete	trend,	only	a	4‐year	sample	was	required	for	short	genera-
tion‐length	species	(Figure	6a,	'Matching',	bottom	right	corner),	but	
an	11‐year	sample	was	required	for	long	generation‐length	species	

(Figure	6c,	'Matching',	last	column,	11th	cell).	Erroneous	trends	and	
opposing	trends	were	roughly	equal	among	populations	of	different	
generation‐lengths	(Figure	6,	Supporting	Figure	S3).	Populations	of	
different	generation‐lengths	performed	similarly	 according	 to	 the	
Magnitude	Comparison	method	(Supporting	Figures	S4	and	S5).

There	was	 a	 surprising	 amount	 of	 consistency	 in	 results	when	
considering	 trend	 shape	 (i.e.	 linear	 vs.	 nonlinear).	When	using	 the	
Sign	Comparison	method	(Supporting	Figures	S6	and	S7),	percent-
ages	of	matching,	opposing	and	missed	positives/negatives	remained	
stable	 as	 trend	 complexity	 increased,	 though	 erroneous	 positives	
and	negative	were	 less	common	 for	 simpler	 trend	shapes	 (low	es-
timated	degrees	of	freedom).	Similarly,	trend	shape	did	not	seem	to	
affect	the	percentage	of	samples	that	were	correct	according	to	the	
Magnitude	Comparison	method	(Supporting	Figures	S8	and	S9).

4  | DISCUSSION

In	this	paper,	we	provide	and	test	a	method	that	can	estimate	reli-
ability	of	population	trends	of	different	lengths	and	sampling	types,	
based	on	the	total	time	over	which	a	trend	estimate	is	desired.	Our	

F I G U R E  5  Magnitude	comparison	using	Interval	Sampling.	Lines	show	percentage	of	sample	trends	that	correctly	estimate	complete	
trends	(y‐axis),	measured	by	whether	the	sample	r	matched	the	complete	r	within	the	tolerance	(colours);	samples	taken	using	Interval	
Sampling.	Shown	for	six	stages	of	Interval	Sampling:	samples	taken	either	every	1	(a),	3	(b),	5	(c),	7	(d),	9	(e)	or	11	(f)	years	(facets),	for	
all	possible	numbers	of	years	sampled	(x‐axis).	Complete	trend	length	is	always	30	years.	Note	that	panel	a	is	equal	to	Figure	4d	(with	a	
truncated	x	axis)
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results	are	derived	from	an	entirely	empirical	dataset	with	no	simu-
lations	and	they	show	a	high	amount	of	convergence	(e.g.	Figure	4),	
indicating	that	our	sample	sizes	are	 large	enough	to	give	a	reliable	
estimate	of	likelihood	for	each	category.	Our	results	were	robust	to	

standardization	of	the	number	of	populations	per	species,	subsetting	
of	 species	 into	 three	 separate	 groups	 based	 on	 generation	 length	
(see	also	White,	2019)	and	subsetting	of	populations	into	different	
trend	shapes.	We	discuss	the	meaning	of	our	results	in	the	context	

F I G U R E  6  Sign	comparison	using	Consecutive	Sampling,	for	populations	of	different	generation	lengths.	Colour	shows	percentage	of	
sample	trends	that,	relative	to	the	complete	trend,	were	matching,	opposing,	an	erroneous	positive/negative	or	a	missed	positive/negative	
(see	Table	1).	Shown	for	all	combinations	of	sample	lengths	(y‐axis),	and	complete	lengths	(x‐axis).	Divided	by	populations	with	either	a)	short	
(1–5	years),	b)	medium	(6–10	years)	or	c)	long	(11–15	years)	generation	lengths
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of	trusting	population	trends,	how	our	methods	can	be	adapted	to	
other	taxa,	and	how	results	from	our	methods	can	be	used	to	quan-
tify	reliability	in	large‐scale	studies	of	population	trends	and	to	de-
sign	future	monitoring	schemes.

4.1 | Waterbird case study

Our	results	show	that	if	a	significant	trend	is	obtained	from	a	popu-
lation	 time	 series,	 even	when	 the	 data	 are	 from	 a	 few	 years,	 it	 is	
likely	to	reflect	the	 longer	term	trend	sign	 (direction)	of	the	popu-
lation,	 though	 not	 necessarily	 the	 magnitude.	 Keith	 et	 al.	 (2015)	
studying	birds	similarly	found	that	past	population	trajectory	was	a	
good	predictor	of	future	population	trajectory	and	Møller,	Rubolini,	
and	Lehikoinen	 (2008)	and	Sanderson,	Donald,	Pain,	Burfield,	 and	
Bommel	 (2006)	found	a	similar,	 though	weak,	correlation	between	
trends	 of	 migratory	 birds	 between	 1970–1990	 and	 1990–2000.	
However,	we	show	that	 to	be	confident	 that	an	 insignificant	 trend	
(implying	a	stable	population)	is	representative,	one	must	sample	for	
many	years.	Further,	if	an	insignificant	trend	is	obtained,	it	is	more	
likely	to	be	missing	a	decline	than	an	increase	in	a	population,	and	
we	suggest	caution	with	conclusions	and	decisions	from	insignificant	
trends.	 It	 should	be	noted	 that	Keith	et	 al.	 (2015)	 found	 that	past	
trajectories	were	not	a	good	predictor	of	future	trajectories	in	mam-
mals,	salmon	and	other	fish,	meaning	this	method	should	be	tested	
on	other	taxa	using	relevant	data.

Sampling	in	intervals	provided	surprisingly	accurate	results	that	
were	better	when	compared	to	sampling	the	same	number	of	years	
consecutively.	When	 sampling	 a	 fixed	 number	 of	 times,	 accuracy	
increased	 with	 the	 distance	 between	 each	 sample.	 Presumably	 a	
limit	exists	at	some	point,	but	according	to	these	results	it	is	greater	
than	14	years.	Other	studies	have	found	similar	results	(Starcevich,	
Irvine,	&	Heard,	2018;	Urquhart,	Paulsen,	&	Larsen,	1998),	for	exam-
ple	Reynolds	et	al.	 (2011)	found	that	surveying	brown	bears	every	
10	years	gave	 similar	model	performance	 to	 surveying	 in	3	out	of	
every	5	years.	Interval	sampling	could	allow,	say,	a	greater	number	of	
sites	to	be	surveyed	over	a	given	area	(Buckland	&	Johnston,	2017).	
However	 it	 is	 not	 always	practical,	 especially	 for	high‐risk	 species	
where	declines	may	need	 to	be	detected	and	acted	on	quickly.	 In	
addition,	while	interval	sampling	could	be	good	for	cheaply	obtaining	
trend	estimates,	it	is	not	a	replacement	for	long‐term	monitoring	that	
takes	yearly	samples,	which	can	provide	data	for	analyses	consider-
ing	drivers	of	population	change.

In	 cases	where	analyses	or	management	decisions	depend	not	
only	 on	 the	 sign	of	 a	 population	 trajectory,	 but	 the	 actual	 rate	 of	
change,	we	find	that	sample	trends	are	much	 less	 likely	to	be	rep-
resentative	 of	 complete	 trends.	 To	 be	 80%	 reliable	 at	 a	 rate	 of	
population	 change	 of	 1%–2.5%	 per	 year	 over	 30	 years,	 one	must	
sample	for	at	least	19	consecutive	years.	These	results	are	roughly	
similar	to	White	(2019)	who	found,	with	diverse	taxa,	that	to	detect	
a	population	change	of	1%	per	year	one	would	need	to	sample	for	
25–30	years;	although	a	study	of	an	invertebrates	found	diminishing	
returns	on	accuracy	for	samples	greater	than	10–15	years	in	length	
(Rueda‐Cediel	et	al.,	2015).	 In	our	study,	sampling	 in	 intervals	also	

struggled	 to	 produce	 accurate	 results:	 80%	 reliability	 was	 never	
achieved	if	samples	had	to	be	correct	at	anything	less	than	a	rate	of	
change	of	10%	per	year	(i.e.	drastic	population	change).

Finally,	we	found	that	generation	 length	appears	to	have	some	
impact	 on	 results,	 with	 short	 samples	 from	 longer	 lived	 species	
less	 likely	 to	 be	 accurate.	 This	 is	 probably	 because	 longer	 gener-
ation	 times	 can	 create	 a	 lag	 in	 population	 responses	 to	 pressures	
(Kuussaari	et	al.,	2009).	The	chance	of	making	an	erroneous	conclu-
sion,	missing	a	trend,	or	falsely	identifying	a	trend	remained	consis-
tent	regardless	of	generation	length.	These	results	were	exploratory,	
not	hypothesis	testing,	and	should	therefore	not	be	considered	con-
clusive.	This	would	be	an	interesting	area	for	further	research.

This	analysis	was	kept	simple	by	restricting	it	to	single	location	
time	series,	and	by	restricting	sampling	to	a	minimum	of	once	every	
year.	Increasing	the	number	of	samples	in	each	time	period	can	im-
prove	 confidence	 and	 accuracy	 in	 derived	 trends	 (Atkinson	 et	 al.,	
2006)	 and	 it	 is	 likely	 that	 percentage	 reliability	 in	 derived	 trends	
would	 increase	 if	 this	 was	 considered.	 Some	 studies	 have	 found	
that	 sampling	 at	 more	 locations	 improved	 trend	 detection	 better	
than	 longer	 time	 series	 (Sims,	Wanless,	Harris,	Mitchell,	 &	 Elston,	
2006,	though	see	Schumann,	Dann,	Hoskins,	&	Arnould,	2013)	and	
so	modelling	trends	from	multiple	locations	is	also	likely	to	improve	
our	reliability	estimates	(Rhodes	&	Jonzén,	2011).

4.2 | Applications

For	those	working	with	 large	datasets	who	cannot	conduct	power	
analysis	 or	 quantify	 measurement	 error	 in	 their	 populations,	 reli-
ability	 can	 be	 assigned	 to	 trends	 using	 the	 data	 from	 this	 study	
(see	 Supporting	 Information	 Section	 7),	 or	 data	 produced	 using	
these	methods	with	other	taxa	(using	the	provided	code,	see	Data	
Accessibility).	 The	 user	 should	 define	 a	 target	 ‘complete’	 trend	
length	 for	 the	 study,	 and	 extract	 the	 reliability	 estimates	 for	 this	
complete	 trend	 length.	After	 this,	 two	options	are	possible:	 (a)	as-
sign	 reliability	 estimates	 to	each	 time	 series	based	on	how	 long	 it	
is,	and	weight	analysis	according	to	these	estimates	or	 (b)	select	a	
threshold	(e.g.	time	series	must	be	at	 least	80%	likely	to	represent	
the	complete	 trend)	and	 remove	any	 time	series	 that	do	not	meet	
this	criteria.	We	readily	agree	that	our	values	are	not	infallible:	they	
could	 vary	with	 location,	 time	 period	 or	 taxa.	However,	 this	 is	 an	
improvement	on	making	an	arbitrary	cut‐off	point,	or	having	no	way	
of	weighting	population	trends.

These	results	could	also	be	used	to	help	plan	future	monitor-
ing	 schemes,	 but	we	would	 advise	 this	 be	 done	 cautiously.	 The	
goals	of	monitoring	have	been	subject	to	much	discussion	(Hauser,	
Pople,	&	Possingham,	2006;	Legg	&	Nagy,	2006;	Lindenmayer	&	
Likens,	2009;	McDonald‐Madden	et	al.,	2010;	Nichols	&	Williams,	
2006),	but	in	cases	where	programs	are	carried	out	with	the	goal	
of	detecting	trends	(Marsh	&	Trenham,	2008)	we	can	add	our	sup-
port	to	previous	works	(e.g.	Rhodes	&	Jonzén,	2011;	Rueda‐Cediel	
et	al.,	2015;	White,	2019)	that	suggest	that	many	years	of	monitor-
ing	is	essential	to	accurately	capturing	population	trends.	We	also	
suggest	that	resources	could	be	conserved	and	possibly	allocated	
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to	 more	 locations	 or	 taxa	 if	 sampling	 is	 conducted	 in	 intervals	
rather	than	every	year.

5  | CONCLUSIONS

In	this	age	of	increasing	large‐scale	analyses,	we	believe	the	scien-
tific	community	can	do	better	at	making	informed	decisions	around	
uncertainty	and	reliability.	Our	methods	and	results	provide	a	clear	
and	quantitative	way	to	add	rigour	to	large‐scale	population	analy-
ses.	We	advocate	an	end	to	arbitrary	cut‐offs,	and	recommend	that,	
where	 possible,	 users	 instead	 consider	 methods	 such	 as	 ours	 to	
quantify	reliability	and	make	decisions	about	their	data	accordingly.	
Our	methods	are	fully	transferable	to	other	taxa,	and	the	concepts	
can	also	be	transferred	to	areas	outside	of	population	ecology.

ACKNOWLEDG EMENTS

CBC	 Data	 are	 provided	 by	 National	 Audubon	 Society	 and	 through	
the	generous	efforts	of	Bird	Studies	Canada	and	countless	volunteers	
across	the	western	hemisphere.	H.S.W.	was	supported	by	a	Cambridge	
Trust	Cambridge‐Australia	Scholarship	and	the	Cambridge	Department	
of	 Zoology	 JS	Gardiner	 Fellowship.	W.J.S.	 is	 funded	 by	Arcadia.	We	
thank	Richard	Fuller,	Benno	Simmons	and	Martin	Wauchope	for	helpful	
comments	and	discussion.	Finally,	we	thank	two	anonymous	reviewers	
for	highly	constructive	feedback	and	the	suggestion	of	Figure	1.

AUTHORS'  CONTRIBUTIONS

H.S.W.,	T.A.,	W.J.S.	and	A.J.	conceived	the	ideas	and	designed	meth-
odology.	T.A.	collated	the	data;	H.S.W.	analysed	the	data	and	led	the	
writing	of	 the	manuscript.	All	 authors	 contributed	 critically	 to	 the	
drafts	and	gave	final	approval	for	publication.

DATA AVAIL ABILIT Y S TATEMENT

All	data	used	in	our	analysis	are	available	from	the	Christmas	Bird	Count.	
Audubon,	who	manage	the	data,	denied	our	request	to	archive	the	data	
in	accordance	with	the	BES	Data	Archiving	Policy	due	to	trademark	is-
sues,	but	are	happy	to	provide	it	upon	request	at	http://netapp.audub	
on.org/cbcob	serva	tion/.	Code,	which	 is	written	 to	be	 fully	adaptable	
to	other	data,	 is	available	both	in	the	Supporting	Information	and	on	
GitHub,	 (https	://github.com/hanna	hwauc	hope/Trust	ingTr	ends,	 https	
://doi.org/10.5281/zenodo.3417001;	 Wauchope,	 2019)	 we	 recom-
mend	using	the	GitHub	code	as	this	will	remain	up	to	date.

ORCID

Hannah S. Wauchope  https://orcid.org/0000‐0001‐5370‐4616 

Tatsuya Amano  https://orcid.org/0000‐0001‐6576‐3410 

William J. Sutherland  https://orcid.org/0000‐0002‐6498‐0437 

Alison Johnston  https://orcid.org/0000‐0001‐8221‐013X 

R E FE R E N C E S

Amano,	T.,	Székely,	T.,	Sandel,	B.,	Nagy,	S.,	Mundkur,	T.,	Langendoen,	T.,	
…	Sutherland,	W.	J.	(2018).	Successful	conservation	of	global	water-
bird	populations	depends	on	effective	governance.	Nature,	553,	199.	
https	://doi.org/10.1038/natur	e25139

Amat,	J.	A.,	&	Green,	A.	J.	 (2010).	Waterbirds	as	bioindicators	of	envi-
ronmental	conditions.	In	C.	Hurford,	M.	Schneider,	&	I.	Cowx	(Eds.),	
Conservation monitoring in freshwater habitats: A practical guide and 
case studies	(pp.	45–52).	Dordrecht:	Springer	Netherlands.

Atkinson,	 P.	W.,	 Austin,	G.	 E.,	 Rehfisch,	M.	M.,	 Baker,	H.,	 Cranswick,	 P.,	
Kershaw,	M.,	…	Maclean,	I.	M.	D.	(2006).	Identifying	declines	in	water-
birds:	The	effects	of	missing	data,	population	variability	and	count	period	
on	the	interpretation	of	long‐term	survey	data.	Biological Conservation,	
130,	549–559.	https	://doi.org/10.1016/j.biocon.2006.01.018

Buckland,	 S.	 T.,	 &	 Johnston,	 A.	 (2017).	Monitoring	 the	 biodiversity	 of	
regions:	Key	principles	and	possible	pitfalls.	Biological Conservation,	
214,	23–34.	https	://doi.org/10.1016/j.biocon.2017.07.034

Butcher,	G.	S.,	&	McCulloch,	C.	E.	(1988).	Influence	of	observer	effort	on	
the	number	of	 individual	birds	 recorded	on	Christmas	bird	counts.	
Biological Reports,	90,	120–129.

Collen,	B.,	 Loh,	 J.,	Whitmee,	S.,	McRae,	L.,	Amin,	R.,	&	Baillie,	 J.	E.	M.	
(2009).	 Monitoring	 change	 in	 vertebrate	 abundance:	 The	 liv-
ing	 planet	 index.	 Conservation Biology,	 23,	 317–327.	 https	://doi.
org/10.1111/j.1523‐1739.2008.01117.x

Connors,	B.	M.,	Cooper,	A.	B.,	Peterman,	R.	M.,	&	Dulvy,	N.	K.	 (2014).	
The	 false	 classification	 of	 extinction	 risk	 in	 noisy	 environments.	
Proceedings of the Royal Society B: Biological Sciences,	281,	20132935.	
https	://doi.org/10.1098/rspb.2013.2935

Craigie,	I.	D.,	Baillie,	J.	E.	M.,	Balmford,	A.,	Carbone,	C.,	Collen,	B.,	Green,	
R.	E.,	&	Hutton,	J.	M.	 (2010).	Large	mammal	population	declines	 in	
Africa's	 protected	 areas.	 Biological Conservation,	 143,	 2221–2228.	
https	://doi.org/10.1016/j.biocon.2010.06.007

Dunn,	E.	H.	 (2002).	Using	decline	 in	bird	populations	to	 identify	needs	
for	conservation	action.	Conservation Biology,	16,	1632–1637.	https	
://doi.org/10.1046/j.1523‐1739.2002.01250.x

Dunn,	E.	H.,	Francis,	C.	M.,	Blancher,	P.	J.,	Drennan,	S.	R.,	Howe,	M.	A.,	
Lepage,	 D.,	 …	 Smith,	 K.	 G.	 (2005).	 Enhancing	 the	 scientific	 value	
of	 the	 Christmas	 Bird	 Count.	 The Auk,	 122,	 338–346.	 https	://doi.
org/10.1093/auk/122.1.338

Farmer,	C.	J.,	Hussell,	D.	J.	T.,	&	Mizrahi,	D.	(2007).	Detecting	population	
trends	 in	migratory	birds	of	prey.	The Auk: Ornithological Advances,	
124,	1047–1062.	https	://doi.org/10.1093/auk/124.3.1047

Field,	S.	A.,	O'Connor,	P.	J.,	Tyre,	A.	J.,	&	Possingham,	H.	P.	(2007).	Making	
monitoring	 meaningful.	 Austral Ecology,	 32,	 485–491.	 https	://doi.
org/10.1111/j.1442‐9993.2007.01715.x

Fox,	 R.,	 Harrower,	 C.	 A.,	 Bell,	 J.	 R.,	 Shortall,	 C.	 R.,	Middlebrook,	 I.,	 &	
Wilson,	 R.	 J.	 (2018).	 Insect	 population	 trends	 and	 the	 IUCN	 Red	
List	 process.	 Journal of Insect Conservation,	 23,	 269.	 https	://doi.
org/10.1007/s10841‐018‐0117‐1

Gärdenfors,	U.	(2001).	Classifying	threatened	species	at	national	versus	
global	levels.	Trends in Ecology & Evolution,	16,	511–516.	https	://doi.
org/10.1016/S0169‐5347(01)02214‐5

Gelman,	A.,	&	Carlin,	J.	(2014).	Beyond	power	calculations.	Perspectives on 
Psychological Science,	9(6),	641–651.	https	://doi.org/10.1177/17456	
91614	551642

Hauser,	C.	E.,	Pople,	A.	R.,	&	Possingham,	H.	P.	(2006).	Should	managed	popu-
lations	be	monitored	every	year?	Ecological Applications,	16,	807–819.	https	
://doi.org/10.1890/1051‐0761(2006)016[0807:SMPBM	E]2.0.CO;2

Johnson,	 P.	C.	D.,	 Barry,	 S.	 J.	 E.,	 Ferguson,	H.	M.,	&	Müller,	 P.	 (2014).	
Power	analysis	 for	generalized	 linear	mixed	models	 in	ecology	and	
evolution.	Methods in Ecology and Evolution,	6,	133–142.	https	://doi.
org/10.1111/2041‐210X.12306	

Keith,	D.,	Akçakaya,	H.	R.,	Butchart,	 S.	H.	M.,	Collen,	B.,	Dulvy,	N.	K.,	
Holmes,	 E.	 E.,	 …	 Waples,	 R.	 S.	 (2015).	 Temporal	 correlations	 in	

http://netapp.audubon.org/cbcobservation/
http://netapp.audubon.org/cbcobservation/
https://github.com/hannahwauchope/TrustingTrends
https://doi.org/10.5281/zenodo.3417001
https://doi.org/10.5281/zenodo.3417001
https://orcid.org/0000-0001-5370-4616
https://orcid.org/0000-0001-5370-4616
https://orcid.org/0000-0001-6576-3410
https://orcid.org/0000-0001-6576-3410
https://orcid.org/0000-0002-6498-0437
https://orcid.org/0000-0002-6498-0437
https://orcid.org/0000-0001-8221-013X
https://orcid.org/0000-0001-8221-013X
https://doi.org/10.1038/nature25139
https://doi.org/10.1016/j.biocon.2006.01.018
https://doi.org/10.1016/j.biocon.2017.07.034
https://doi.org/10.1111/j.1523-1739.2008.01117.x
https://doi.org/10.1111/j.1523-1739.2008.01117.x
https://doi.org/10.1098/rspb.2013.2935
https://doi.org/10.1016/j.biocon.2010.06.007
https://doi.org/10.1046/j.1523-1739.2002.01250.x
https://doi.org/10.1046/j.1523-1739.2002.01250.x
https://doi.org/10.1093/auk/122.1.338
https://doi.org/10.1093/auk/122.1.338
https://doi.org/10.1093/auk/124.3.1047
https://doi.org/10.1111/j.1442-9993.2007.01715.x
https://doi.org/10.1111/j.1442-9993.2007.01715.x
https://doi.org/10.1007/s10841-018-0117-1
https://doi.org/10.1007/s10841-018-0117-1
https://doi.org/10.1016/S0169-5347(01)02214-5
https://doi.org/10.1016/S0169-5347(01)02214-5
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1890/1051-0761(2006)016%5B0807:SMPBME%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2006)016%5B0807:SMPBME%5D2.0.CO;2
https://doi.org/10.1111/2041-210X.12306
https://doi.org/10.1111/2041-210X.12306


12  |    Methods in Ecology and Evoluon WAUCHOPE Et Al.

population	trends:	Conservation	implications	from	time‐series	analy-
sis	of	diverse	animal	taxa.	Biological Conservation,	192,	247–257.	https	
://doi.org/10.1016/j.biocon.2015.09.021

Kuussaari,	 M.,	 Bommarco,	 R.,	 Heikkinen,	 R.	 K.,	 Helm,	 A.,	 Krauss,	 J.,	
Lindborg,	R.,	…	Steffan‐Dewenter,	I.	(2009).	Extinction	debt:	A	chal-
lenge	for	biodiversity	conservation.	Trends in Ecology & Evolution,	24,	
564–571.	https	://doi.org/10.1016/j.tree.2009.04.011

Legg,	C.	J.,	&	Nagy,	L.	(2006).	Why	most	conservation	monitoring	is,	but	
need	not	be,	a	waste	of	time.	Journal of Environmental Management,	
78,	194–199.	https	://doi.org/10.1016/j.jenvm	an.2005.04.016

Lindenmayer,	D.	B.,	&	Likens,	G.	E.	(2009).	Adaptive	monitoring:	A	new	
paradigm	for	long‐term	research	and	monitoring.	Trends in Ecology & 
Evolution,	24,	482–486.	https	://doi.org/10.1016/j.tree.2009.03.005

Loh,	J.,	Green,	R.	E.,	Ricketts,	T.,	Lamoreux,	J.,	Jenkins,	M.,	Kapos,	V.,	&	
Randers,	J.	(2005).	The	living	planet	index:	Using	species	population	
time	series	to	track	trends	in	biodiversity.	Philosophical Transactions 
of the Royal Society B: Biological Sciences,	360,	289–295.	https	://doi.
org/10.1098/rstb.2004.1584

Magurran,	A.	E.,	Baillie,	S.	R.,	Buckland,	S.	T.,	Dick,	J.	M.	P.,	Elston,	D.	A.,	
Scott,	E.	M.,	…	Watt,	A.	D.	(2010).	Long‐term	datasets	in	biodiversity	
research	and	monitoring:	Assessing	change	 in	ecological	communi-
ties	through	time.	Trends in Ecology & Evolution,	25,	574–582.	https	://
doi.org/10.1016/j.tree.2010.06.016

Marsh,	D.	M.,	&	Trenham,	P.	C.	(2008).	Current	trends	in	plant	and	animal	
population	monitoring.	Conservation Biology,	22,	 647–655.	 https	://
doi.org/10.1111/j.1523‐1739.2008.00927.x

McCain,	C.,	Szewczyk,	T.,	&	Knight,	K.	B.	(2016).	Population	variability	com-
plicates	 the	 accurate	 detection	 of	 climate	 change	 responses.	 Global 
Change Biology,	22,	2081–2093.	https	://doi.org/10.1111/gcb.13211	

McDonald‐Madden,	E.,	Baxter,	P.	W.	J.,	Fuller,	R.	A.,	Martin,	T.	G.,	Game,	
E.	T.,	Montambault,	J.,	&	Possingham,	H.	P.	(2010).	Monitoring	does	
not	always	count.	Trends in Ecology & Evolution,	25,	547–550.	https	://
doi.org/10.1016/j.tree.2010.07.002

Møller,	 A.	 P.,	 Rubolini,	D.,	 &	 Lehikoinen,	 E.	 (2008).	 Populations	 of	mi-
gratory	bird	 species	 that	 did	not	 show	a	phenological	 response	 to	
climate	change	are	declining.	Proceedings of the National Academy of 
Sciences of the United States of America,	105,	16195–16200.	https	://
doi.org/10.1073/pnas.08038	25105	

NESP	Threatened	Species	Recovery	Hub.	(2018).	The	threatened	species	
index	for	australian	birds.	Retrieved	from	https	://tsx.org.au/	(last	ac-
cessed	19	July	2019).

Nichols,	 J.	 D.,	 &	Williams,	 B.	 K.	 (2006).	 Monitoring	 for	 conservation.	
Trends in Ecology & Evolution,	21,	668–673.	https	://doi.org/10.1016/j.
tree.2006.08.007

Piersma,	T.,	&	Lindström,	Å.	(2004).	Migrating	shorebirds	as	integrative	
sentinels	of	global	environmental	 change.	 Ibis,	146,	 61–69.	https	://
doi.org/10.1111/j.1474‐919X.2004.00329.x

Prozt,	E.	J.,	Peterman,	R.	M.,	Dulvy,	N.	K.,	Cooper,	A.	B.,	&	Irvine,	J.	R.	(2012).	
Reliability	of	indicators	of	decline	in	abundance.	Conservation Biology,	
26,	894–904.	https	://doi.org/10.1111/j.1523‐1739.2012.01882.x

R	 Core	 Team.	 (2017).	 R: A Language and Environment for Statistical 
Computing.	Vienna,	Austria:	R	Foundation	for	Statistical	Computing.

Reynolds,	 J.	 H.,	 Thompson,	W.	 L.,	 &	 Russell,	 B.	 (2011).	 Planning	 for	 suc-
cess:	 Identifying	effective	and	efficient	survey	designs	for	monitoring.	
Biological Conservation,	 144,	 1278–1284.	 https	://doi.org/10.1016/j.
biocon.2010.12.002

Rhodes,	J.	R.,	&	Jonzén,	N.	 (2011).	Monitoring	temporal	 trends	 in	spa-
tially	 structured	 populations:	 How	 should	 sampling	 effort	 be	 allo-
cated	between	space	and	time?	Ecography,	34,	1040–1048.	https	://
doi.org/10.1111/j.1600‐0587.2011.06370.x

Rodrigues,	A.	S.	L.,	Pilgrim,	J.	D.,	Lamoreux,	J.	F.,	Hoffmann,	M.,	&	Brooks,	T.	M.	
(2006).	The	value	of	the	IUCN	Red	List	for	conservation.	Trends in Ecology 
& Evolution,	21,	71–76.	https	://doi.org/10.1016/j.tree.2005.10.010

Rueda‐Cediel,	P.,	Anderson,	K.	E.,	Regan,	T.	J.,	Franklin,	J.,	&	Regan,	H.	
M.	 (2015).	Combined	 influences	of	model	choice,	data	quality,	and	

data	 quantity	 when	 estimating	 population	 trends.	 PLoS ONE,	 10,	
e0132255.	https	://doi.org/10.1371/journ	al.pone.0132255

Sanderson,	F.	J.,	Donald,	P.	F.,	Pain,	D.	J.,	Burfield,	I.	J.,	&	van	Bommel,	F.	
P.	J.	(2006).	Long‐term	population	declines	in	Afro‐Palearctic	migrant	
birds.	Biological Conservation,	131,	93–105.	https	://doi.org/10.1016/j.
biocon.2006.02.008

Schumann,	 N.,	 Dann,	 P.,	 Hoskins,	 A.	 J.,	 &	 Arnould,	 J.	 P.	 Y.	 (2013).	
Optimizing	survey	effort	for	burrow‐nesting	seabirds.	Journal of Field 
Ornithology,	84,	69–85.	https	://doi.org/10.1111/jofo.12007	

Sims,	M.,	Wanless,	 S.,	Harris,	M.	 P.,	Mitchell,	 P.	 I.,	&	 Elston,	D.	A.	 (2006).	
Evaluating	the	power	of	monitoring	plot	designs	for	detecting	long‐term	
trends	in	the	numbers	of	common	guillemots.	Journal of Applied Ecology,	
43,	537–546.	https	://doi.org/10.1111/j.1365‐2664.2006.01163.x

Starcevich,	L.	A.	H.,	Irvine,	K.	M.,	&	Heard,	A.	M.	(2018).	Impacts	of	tem-
poral	revisit	designs	on	the	power	to	detect	trend	with	a	linear	mixed	
model:	 An	 application	 to	 long‐term	 monitoring	 of	 Sierra	 Nevada	
lakes.	 Ecological Indicators,	 93,	 847–855.	 https	://doi.org/10.1016/j.
ecoli	nd.2018.05.087

Taylor,	B.	L.,	&	Gerrodette,	T.	(1993).	The	uses	of	statistical	power	in	conserva-
tion	biology:	The	vaquita	and	northern	spotted	owl.	Conservation Biology,	7,	
489–500.	https	://doi.org/10.1046/j.1523‐1739.1993.07030	489.x

Tománková,	 I.,	Boland,	H.,	Reid,	N.,	&	Fox,	A.	D.	 (2013).	Assessing	 the	
extent	to	which	temporal	changes	in	waterbird	community	compo-
sition	are	driven	by	either	 local,	 regional	or	global	 factors.	Aquatic 
Conservation: Marine and Freshwater Ecosystems,	23,	343–355.	https	
://doi.org/10.1002/aqc.2303

U.S.	Fish	&	Wildlife	Service.	(2018)	Endangered	Species.	Retrieved	from	
https	://www.fws.gov/endan	gered/		(last	accessed	19	July,	2019).

Urquhart,	 N.	 S.,	 Paulsen,	 S.	 G.,	 &	 Larsen,	D.	 P.	 (1998).	Monitoring	 for	
policy‐relevant	 regional	 trends	over	 time.	Ecological Applications,	8,	
246–257.	https	://doi.org/10.2307/2641064

Venables,	W.	N.,	&	Ripley,	B.	D.	 (2002).	Modern applied statistics with S 
(4th	ed.).	New	York,	NY:	Springer.

Wauchope,	H.	(2019).	hannahwauchope/TrustingTrends:	Trusting	Trends	
MEE	Release	(Version	Major_v.1).	Zenodo.	https	://doi.org/10.5281/
zenodo.3417001

White,	E.	R.	(2019).	Minimum	time	required	to	detect	population	trends:	
The	need	for	long‐term	monitoring	programs.	BioScience,	69,	40–46.	
https	://doi.org/10.1093/biosc	i/biy144

Wilson,	H.	B.,	Kendall,	B.	E.,	&	Possingham,	H.	P.	(2011).	Variability	in	popu-
lation	abundance	and	the	classification	of	extinction	risk.	Conservation 
Biology,	25,	747–757.	https	://doi.org/10.1111/j.1523‐1739.2011.01671.x

WWF.	 (2016).	Living planet report 2016. Risk and resilience in a new era. 
Gland,	Switzerland:	WWF	International.

Xu,	C.,	Barrett,	J.,	Lank,	D.	B.,	&	Ydenberg,	R.	C.	(2015).	Large	and	irreg-
ular	population	fluctuations	in	migratory	Pacific	(Calidris alpina paci-
fica)	and	Atlantic	(C. a. hudsonica)	dunlins	are	driven	by	density‐de-
pendence	and	climatic	factors.	Population Ecology,	57,	551–567.	https	
://doi.org/10.1007/s10144‐015‐0502‐5

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.

How to cite this article:	Wauchope	HS,	Amano	T,	Sutherland	
WJ,	Johnston	A.	When	can	we	trust	population	trends?	A	
method	for	quantifying	the	effects	of	sampling	interval	and	
duration.	Methods Ecol Evol. 2019;00:1–12. https	://doi.
org/10.1111/2041‐210X.13302	

https://doi.org/10.1016/j.biocon.2015.09.021
https://doi.org/10.1016/j.biocon.2015.09.021
https://doi.org/10.1016/j.tree.2009.04.011
https://doi.org/10.1016/j.jenvman.2005.04.016
https://doi.org/10.1016/j.tree.2009.03.005
https://doi.org/10.1098/rstb.2004.1584
https://doi.org/10.1098/rstb.2004.1584
https://doi.org/10.1016/j.tree.2010.06.016
https://doi.org/10.1016/j.tree.2010.06.016
https://doi.org/10.1111/j.1523-1739.2008.00927.x
https://doi.org/10.1111/j.1523-1739.2008.00927.x
https://doi.org/10.1111/gcb.13211
https://doi.org/10.1016/j.tree.2010.07.002
https://doi.org/10.1016/j.tree.2010.07.002
https://doi.org/10.1073/pnas.0803825105
https://doi.org/10.1073/pnas.0803825105
https://tsx.org.au/://tsx.org.au/
https://doi.org/10.1016/j.tree.2006.08.007
https://doi.org/10.1016/j.tree.2006.08.007
https://doi.org/10.1111/j.1474-919X.2004.00329.x
https://doi.org/10.1111/j.1474-919X.2004.00329.x
https://doi.org/10.1111/j.1523-1739.2012.01882.x
https://doi.org/10.1016/j.biocon.2010.12.002
https://doi.org/10.1016/j.biocon.2010.12.002
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1016/j.tree.2005.10.010
https://doi.org/10.1371/journal.pone.0132255
https://doi.org/10.1016/j.biocon.2006.02.008
https://doi.org/10.1016/j.biocon.2006.02.008
https://doi.org/10.1111/jofo.12007
https://doi.org/10.1111/j.1365-2664.2006.01163.x
https://doi.org/10.1016/j.ecolind.2018.05.087
https://doi.org/10.1016/j.ecolind.2018.05.087
https://doi.org/10.1046/j.1523-1739.1993.07030489.x
https://doi.org/10.1002/aqc.2303
https://doi.org/10.1002/aqc.2303
https://www.fws.gov/endangered/
https://doi.org/10.2307/2641064
https://doi.org/10.5281/zenodo.3417001
https://doi.org/10.5281/zenodo.3417001
https://doi.org/10.1093/biosci/biy144
https://doi.org/10.1111/j.1523-1739.2011.01671.x
https://doi.org/10.1007/s10144-015-0502-5
https://doi.org/10.1007/s10144-015-0502-5
https://doi.org/10.1111/2041-210X.13302
https://doi.org/10.1111/2041-210X.13302

